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Abstract
Objective: This paper investigates contagion epidemic in a multivariate time-varying asymmetric framework, focusing on three 
African countries, namely Guinea, Sierra Lione and Liberia, during the epidemic Ebola virus. 

Methods: Specifically, both a multivariate Gaussian copula model and the dynamic conditional correlation (DCC) approach are used 
to capture non-linear correlation dynamics during the period March 3, 2014- February 02, 2015. The empirical evidence confirms a 
contagion effect from the epidemic country to all others, for each of the examined Ebola virus.

Results: The results also suggest that Guinea is more prone to epidemic contagion, while the numbers of deaths turmoil has a larger 
impact than country-specific epidemic Ebola virus.

Conclusion: Our findings imply that policy responses to an epidemic Ebola are unlikely to prevent the spread among countries, 
making fewer domestic risks internationally diversifiable when it is most desirable.
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Introduction 

The notion of contagion is more related to periods of epidemic 
when the phenomena of transmission of shocks are clearly felt. In 
this study, we have adopted the definition proposed by Forbes and 
Rigobon [1] according to them, contagion epidemic is ‘a significant 
increase in cross-country linkages after a shock to one country (or 
group of countries)’. 

Our focus is strictly limited to the Ebola virus 2014-2015. 
We apply the semi-parametric local Whittle method Künsch 
[2] and Taqqu and Teverovsky [3] to estimate the long memory 
dependencies in the volatility process of the daily frequency data 
through various sampling frequencies.

Understanding dependence between extremely large returns 
is an important research topic in death of economics. Most of 

past research has tended to focus only on the dependence during 
“normal” period conditions. There is even less research that focuses 
on the co-movements between numbers of deaths under extreme 
country conditions (such as series stress or series crash). The 
scant volume of literature on the extreme co-movements may be 
due to the lack of an appropriate tools or methodology to address 
the issue. In this paper, we try to fill this gap by applying a copula 
approach to study the relationship between numbers of deaths 
during the recent period.

As the DCC multivariate GARCH model is the best one to analyze 
contagion, we adopt a new class of this model the (DCC) [Engle [4]] 
and capable of estimating large time-varying covariance matrices. 

 It is of paramount importance in this paper to shed some light 
on three main issues. First, we look at the persistence of the shocks 
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for all the countries studied (Guinea, Sierra-Lione and Liberia). 
Second, we identify the existence of two regimes of volatility, and 
show that all number of deaths series are simultaneously in the 
same regime. Third we examine the international transmission of 
the Guinea outbreak Ebola virus to the West African countries.

The rest of this paper is organized as follows: Section 2 describes 
the DCC multivariate GARCH models used to study the contagion 
effect on the total cases and total deaths. Section 3 is a discussion 
of the empirical results and Section 4 is a conclusion.

Descriptive statistics
Guinea Liberia Sierra Lione

T cases T deaths T cases T deaths T cases T deaths
T 102 102 102 102 102 102
Mean 770.80 486.617 2 100.676 961.666 1966 558.66
Std. dev. 867.178 536.97 2 973.55 1 289.565 3 039.49 839.48
Skewness 1.128* 1.204* 1.113* 0.936* 1.618* 1.839*
Kurtosis 0.086 0.503 -0.372 -0.789 1.450* 2.790*
J.B 21.697* 25.737* 21.663* 17.565* 53.45* 90.60*
ARCH 0.648** 0.538** 0.825** 0.756** 0.689** 0.579**

Table 1: The descriptive statistics of the total cases and total deaths.

(i) J-B is the statistic of Jarque-Bera normal distribution test. (ii) LB(10) is the 10-day lag return of Ljung-Box statistic, LB2(10) is the 10-
day lag square return of Ljung-Box statistic. (iii)* denotes 5% significant level.

Materials and Methods

GARCH models

The Autoregressive Conditional Heteroscedasticity (ARCH) 
process proposed by Engle [5] and the generalized ARCH (GARCH) 
by Bollerslev and Wright [6] are well known in the volatility 
modeling of number of cases and number of deaths. In examining 
the volatility transmission between countries, however, a 
multivariate GARCH approach is preferred over univariate settings.

Results

In the total cases, the number of cases mean is important in 
Liberia (2100.676) than the Guinea and Sierra Lione. In Liberia, 
also the number of deaths in mean is important than the others 
countries studied. Meanwhile, the standard deviation shows that 
the total deaths in Guinea has the highest risk (Std. dev = 536.97). 
The total cases in Sierra Lione takes the high risk (Std. dev = 3 
039.49). The reason for higher risk could be that this period appears 
to be an extraordinary period for all indices studied. The skewness 
coefficients present the asymmetric and left-skewed distribution 
of Guinea, Liberia and Sierra Lione total cases and deaths. The 
excess 3 kurtosis coefficients exhibit a leptokurtic distribution of 
the Sierra Lione total cases and deaths. 

Jarque-Bera (J-B) normal distribution test shows that all 
numbers of deaths are not normal distribution. We test further 
for the autocorrelation of cases and deaths through the use of 
Ljung-Box statistic. This also means that the heteroscedasticity 

of total cases and deaths should change according to time. This 
result suggests the use of the estimation and variance of the 
autoregressive conditional heteroscedasticity (ARCH) model of 
Engle [5].

Effects of the 2014-2015 African Ebola virus

We now consider the contagion effects of the 2014-2015 African 
and the volatility transmission from the Guinean to the rest of the 
West Africa during the outbreaks Ebola virus. For this purpose, we 
split our data into two subsets: total cases and total deaths. Again 
we examine the estimated results of the DCC multivariate GARCH 
for three countries; we conduct cross-country correlation analysis 
to find the evidence of contagion between courtiers for total cases 
and total deaths. Finally, using the DCC bivariate GARCH framework, 
we estimate three pair-wise models as explained above. 

We examine the whole period to assess the repercussions of the 
outbreaks Ebola virus. We pay special attention to the transmission 
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Guinea-Liberia-Sierra Lione

cα
0.17*
(0.01)

cβ
0.658*
( 0.03)

c cα β+
0.828

Table 2: DCC multivariate GARCH models (total cases)

Notes: The value between (.) is p-value. * denotes the significant 
level of 5%.

of shocks and volatility. Our estimated model for the whole period 
shows that the linkage between the Guinean numbers of cases, the 
Liberian and Sierra Lione ones has increased. When standardized 
residuals are not auto-correlated, the maximum likelihood method 
can be used to obtain the mean reverting dynamic conditional 
correlations. Table reports the results. 

We find cβ being bigger than cα , under restriction that 
coefficients and 1c cα β+ < . The evidence from these results 
suggests that the big shock has led to the small correction in the 
oncoming mutual fluctuation (or covariance) between markets. 
The DCC model for each country shows significant coefficients for 
covariance matrix of tu .

Our findings indicate that the correlation coefficients, cα and

cβ  respectively are pretty small, and all are below 0.5, indicating 
that the selected conditioning variables contain sufficiently 
orthogonal information. We find cβ  0.658 being greater than 

cα , 0.17 under restriction that coefficients and 1c cα β+ <  is 
0.828. The evidence from these results suggests that a big shock 
just causes a small correction in the oncoming mutual fluctuation 
(or covariance) between the countries Guinea, Liberia and Sierra 
Lione. The results of DCC multivariate GARCH model reported show 
that the coefficients are significant, indicating that the dynamics of 
epidemics transmission from are found in African countries.

Concerning the DCC bivariate GARCH models we proved that 
the cβ  in Guinea-Liberia (0.75) is being greater than cβ  in Guinea- 
Sierra Lione (0.52) and Liberia-Sierra Lione (0.42). Concerning 
the cα  it is low for all three cases, indicating the persistence of 
epidemics among Liberia and Sierra Lione being greater than 
others countries considered.

Discussion and Conclusion

Finally, using a DCC bivariate GARCH model, we have estimated 
two pair-wise models. During the outbreak Ebola virus, the Liberia 
and Sierra Lione countries were affected by a strong contagion 
coming directly from the Guinea number of deaths. For the Sierra 
Lione country, the shocks did not come directly from the Liberia. 
This indicates that the Guinea country was partially integrated into 
the West African countries. Finally, our main results are globally 
robust to countries as well as the choice of alternative GARCH-type 
specifications allowing for both asymmetry and long memory in 
the conditional volatility processes, but are sensitive to the use of 
raw number of deaths. Consistent with previous studies focusing 
on number of deaths co-movement, we notice an increase in 
extreme dependence for several oil-exchange rate market pairs in 
times of epidemics [7-24].
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