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Abstract Smartwatches and fitness trackers generate vast amounts of sensitive health data, but traditional machine learning
requires centralized collection, raising privacy concerns under HIPAA and GDPR. In this work, we present a privacy-preserving
federated learning framework for smart healthcare devices allowing shared training of models with patient privacy protections.
Our framework is an Adaptive Differential Privacy Federated Learning (ADP-FL) algorithm, which guarantees privacy protections
accounting for the data heterogeneity and maintains clinical utility. The system addresses wearable device constraints including
limited computational resources and non-IID data distributions. Evaluation using PhysioNet and MIMIC-III datasets demonstrate
87.3-92.1% accuracy for cardiac arrhythmia detection with differential privacy guarantees (epsilon 1.2-6.8). The system limits
membership inference attacks to near-random performance (51.2-53.8%) and maintains communication efficiency at 0.8 MB per
device per round with 3.2% battery overhead. Scalability testing with 5,000 devices shows minimal performance degradation,
establishing federated learning as viable for collaborative healthcare Al while preserving privacy.

Index Terms— federated learning, differential privacy, smart watches, privacy-preserving, healthcare data.

and unused due to privacy concerns; strict legal frameworks

[. INTRODUCTION further restrict data sharing even for research [6]; and the
Smart healthcare devices such as smartwatches and fitness highly ~diverse (“non-IID”) nature of wearable data
trackers are widely used to monitor heart rate, sleep, activity, complicates 'model 'performance. Whﬂej federated learnl.ng
and blood oxygen [1]. While millions benefit from these shows promise, major challenges remain. It struggles with
devices, they generate highly sensitive personal data. the diversity of health data, as each person’s information
Centralized collection raises privacy concerns about access vares by age, lifestyle, condition, and device. Differential
and misuse [2]. Yet, if managed securely, this data holds privacy can protect users but often reduces accuracy When
great potential for medical research and improved healthcare. applied to such heterogeneous data [7]. Resource limits—
Traditional machine learning, however, still relies on like computing power, memory, and battery—make many
centralizing data (Fig. 1). Patients’ health data must often be privacy—pre':serving methods imprgctical for wearables [8].
sent to central servers, raising discomfort and privacy risks These devices also generate continuous temporal data, yet
[3]. Federated learning offers a way to train Al models across most research remains theoreFlcal and overlooks real-world
institutions without direct data sharing, though it introduces implementation on actual devices and users.
its own challenges. Strict regulations like HIPAA (U.S.) and prT————
GDPR (Europe) require careful handling of health data [4], il — S
making centralized machine learning difficult. The key issue e TR |
is balancing the use of sensitive wearable data for healthcare — Federated
improvement while protecting privacy. However, several Wi server
obstacles remain: centralized storage increases the chance of Grawa  niggwtetmosn | €———
data leaks or misuse [5]; valuable data often stays isolated B Global Model
Al Qwaid, M. (2025). ADP-FL: Adaptive Differential Privacy Dﬂ_m — |
Federated Learning for Secure and Scalable Smart Healthcare. s P
Journal of Shaqra University for Computing and Information
Technology, 1(1), 13-21. Fig. 1. Federated learning system for smartwatches showing
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local model training and central aggregation adapted from
Advian

This research addresses these challenges by developing a
privacy-preserving federated learning system tailored for
smartwatches and health trackers. The approach aims to
handle diverse user data, ensure strong privacy with accurate
results, and operate efficiently on devices with limited
resources. Using real health datasets such as PhysioNet and
MIMIC-III [9][10], we propose an Adaptive Differential
Privacy Federated Learning (ADP-FL) algorithm that
dynamically adjusts privacy levels based on data
heterogeneity. The system is designed for real wearable
devices, tested against existing methods, and demonstrates
improved performance. Overall, this work provides practical
solutions that balance privacy protection with useful
healthcare outcomes, offering a deployable framework for
researchers and healthcare organizations. This project
addresses a critical need in modern healthcare by using
federated learning to enable collaborative machine learning
while preserving patient privacy and meeting regulatory
standards. The approach promises stronger privacy
protection, supports medical research, and helps healthcare
providers develop better diagnostic and treatment tools
without violating privacy laws. Researchers gain insights
from large-scale health data, and technology companies can
enhance wearable devices while maintaining user trust. The
paper is structured as follows: Section 2 reviews related
work; Section 3 introduces the ADP-FL algorithm and
system design; Section 4 details the experimental setup;
Section 5 presents performance metrics; Section 6 discusses
results; Section 7 outlines future work; and Section 8
concludes.

II. RELATED WORKS

The intersection of federated learning, privacy
preservation, and healthcare has attracted significant
attention. This section reviews related work and highlights
gaps addressed by the proposed approach. Federated learning
has emerged as a promising solution for healthcare, enabling
multi-institutional Al training without direct data sharing. Li
et al. [11] showed its potential despite new security and
privacy concerns, while Rieke et al. [12] surveyed healthcare
applications across medical domains, emphasizing its ability
to apply powerful machine learning without data pooling—a
critical advantage where privacy is essential. Several studies
have applied federated learning in medical settings,
particularly for image classification. Sheller et al. [13]
showed that multi-institutional AI research is possible
without sharing patient data, while Kaissis et al. [14]
emphasized privacy-preserving methods in medical imaging
and noted that over 30% of healthcare organizations have
faced data breaches. Xu et al. [15] demonstrated federated
approaches for EHR analysis, enabling hospitals to
collaborate on predictive modeling while keeping data local.
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However, most work targets traditional clinical
environments, with little focus on wearable devices.
Challenges unique to smartwatches and fitness trackers such
as limited resources, intermittent connectivity, and highly
personalized data—remain largely unaddressed. Privacy-
preserving machine learning is increasingly critical in
healthcare. Dwork and Roth [16] defined differential privacy
as the standard for formal privacy guarantees, while Chen et
al. [17] applied local differential privacy (LDP) to wearable
data streams using adaptive budget allocation. Wang et al.
[18] highlighted the challenges of applying differential
privacy to physiological data, and Acar et al. [19] explored
homomorphic  encryption and secure multi-party
computation, though these methods are often too
computationally heavy for wearables. Xu et al. [20] showed
that LDP is effective for ECG data when no trusted
aggregator exists, as noise is added before transmission.
Despite these advances, existing privacy-preserving methods
remain limited for wearable health data, particularly in non-
IID scenarios where assumptions of identical data
distribution rarely hold. Non-IID (non-independent and
identically distributed) data is a key challenge in federated
learning, especially in healthcare where patient populations,
medical conditions, demographics, and data collection vary.
McMahan et al. [21] introduced FedAvg, which struggles
with heterogeneous data, while Li et al. [22] proposed
FedProx and Karimireddy et al. [23] developed SCAFFOLD
to mitigate client drift. Personalization techniques, including
meta-learning, multi-task learning, and clustered federated
learning, have been explored by Jiang et al. [24], and domain
adaptation methods by Peng et al. [25] help align features
across clients. However, most solutions focus on accuracy,
overlooking privacy challenges in non-IID settings.
Meanwhile, wearable devices like smartwatches provide
continuous health monitoring. Cadmus-Bertram et al. [26]
showed that devices such as the Apple Watch track heart rate,
sleep, activity, and advanced metrics like blood oxygen and
ECG, generating rich physiological data.

Edge computing for wearables has been explored by Shi
et al. [27] to enable real-time health data processing on
resource-limited devices, reducing transmission needs and
improving responsiveness. Privacy concerns are significant:
Vogel et al. [28] highlighted risks from using personal health
data without consent, and Arachchige et al. [29] showed that
local differential privacy can protect wearable IoT data while
preserving some utility. Current research focuses on
individual device optimization and centralized processing,
with limited attention to a comprehensive framework that
addresses the unique challenges of smartwatch federated
learning—resource constraints, intermittent connectivity,
highly personalized data, and strong privacy requirements.

The analysis of existing work reveals several gaps that this
research  addresses. First, federated learning for
smartwatches and personal health devices remains
underexplored, requiring approaches tailored to their
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constraints. Second, current differential privacy methods
degrade significantly with non-IID data, common in personal
health monitoring, limiting both privacy and model utility.
Third, secure aggregation protocols are not optimized for the
limited computational and energy resources of wearables.
Fourth, no unified framework simultaneously handles
differential privacy, secure aggregation, and non-IID data in
smartwatch federated learning. Finally, most studies rely on
simulations, with limited validation on real wearable
datasets. The proposed ADP-FL framework addresses these
gaps by providing adaptive differential privacy, efficient
secure aggregation, and robust handling of heterogeneous
data, offering a comprehensive solution for privacy-
preserving federated learning on resource-constrained
devices (Fig. 2).

- MAPPING RESEARCH -

GAPS TO THE PROPOSED SOLUTIONS IN SMARTWATCH
FEDERATED LEARNING

Problem (Solution
Most studies focus on hospitals, Design the system specifically for
not wearables smartwatches and trackers
Differential privacy breaks down Adaptive Differential Privacy
with non-1ID data handles personalized data

Lightweight, efficient algorithms
for low-power devices

Secure aggregation not optimized Efficient secure aggregation tailored
for wearables for resource-constrained settings
No system handles all 3 challenges Unified framework combining privacy, non-
together 11D handling, and efficiency
Most research uses simulated data
like PhysioNet and MIMIC-11I

- J
Fig. 2. Mapping key research gaps in smartwatch federated

learning to the corresponding solutions proposed in the ADP-FL
framework

Current methods too heavy
for wearable devices

e No data Exchange

O pata @ Model

Fig. 3 System architecture of federated learning

III. METHODS AND MATERIALS

This study develops a privacy-preserving federated
learning system for smart healthcare devices, including
smartwatches, fitness trackers, and heart rate monitors. The
primary goal is to enable collaborative machine learning
across devices to improve diagnostics and health monitoring
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without exposing sensitive personal data. Traditional
methods require centralizing all data, creating privacy and
regulatory risks under laws like HIPAA and GDPR. In the
proposed framework, each device trains a local model using
only its user’s data and shares only model parameters, not
raw health measurements, ensuring complete privacy while
enabling collective learning (Fig. 3).

The approach employs differential privacy, adding
carefully calibrated noise to shared model parameters to
prevent identification of individual patients while still
learning useful health patterns. Noise levels are controlled to
balance strong privacy with model accuracy. The system
architecture features multiple protection layers: at the device
level, each smartwatch or fitness tracker runs a lightweight
machine learning algorithm optimized for wearable data
such as heart rate, sleep quality, activity levels, and vital
signs while respecting computing and battery constraints.
The federated learning process runs in structured
communication rounds to minimize battery and bandwidth
usage. In each round, a subset of devices downloads the
global model, performs local training with their user’s recent
health data, and applies differential privacy to the updates
before sharing. Secure aggregation ensures that only the
combined model is visible, using cryptographic masks to
hide individual contributions. To handle non-IID data,
adaptive algorithms account for variations across users and
device types, ensuring the global model effectively captures
diverse health patterns.

The system handles various health data types continuous
(e.g., heart rate, blood pressure), discrete (e.g., medication
intake, symptom events), and periodic assessments (e.g.,
sleep quality, mood)—with tailored privacy mechanisms and
learning algorithms. Quality control ensures high model
accuracy by detecting corrupted data, malfunctioning
devices, and preventing malicious attacks. The framework
supports dynamic participation, allowing devices to join or
leave the network based on user preferences, battery,
connectivity, and data availability, ensuring flexibility for
real-world deployment. The ADP-FL (Adaptive Different
purify Private Federated Learning) algorithm dynamically
configures data distributions, contributions and reliabilities
based on the model updates and noises. It leverages adaptive
weighting to process non-IID health data and guarantees fair
representation for all users with strong privacy protection.
By combining differential privacy with secure aggregation,
ADP-FL reduces the information leakage; accelerates the
model convergence and fits for device variations about
battery life, connectivity state and computation capacity to
makes the efficient, accurate and privacy-preserving learning
feasible on MDs.

IV. DATASET

This study uses healthcare datasets to develop and
evaluate the privacy-preserving federated learning system.
Primary sources include the PhysioNet and MIMIC-III
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databases, containing extensive patient records and
physiological measurements similar to those collected by
wearable devices, such as heart rate, blood pressure, sleep
patterns, physical activity, and other vital signs. PhysioNet
provides over 80,000 patient records from various clinical
settings over 20+ years, including ECG, PPG, and
accelerometer data. The MIT-BIH Arrhythmia Database
within PhysioNet offers 48 high-quality ECG recordings
from 47 patients, with detailed annotations of heart rhythm
abnormalities, representing a diverse population (ages 23—
89, 60% male, 40% female) for testing federated learning
algorithms [30].

The MIMIC-III database complements PhysioNet by
providing clinical data such as vital signs, lab results,
medication records, and clinical notes from over 46,000 ICU
patients treated between 2001-2012, totaling millions of
measurements. To create realistic testing scenarios for
wearable data, we implemented preprocessing and
partitioning strategies that reflect continuous data collection,
individual baseline differences, and daily variability. Four
data heterogeneity scenarios were simulated. The first, a
uniform distribution, assigned 500-600 patient records per
device with similar demographics and health conditions,
serving as a baseline. The second scenario introduced mild
heterogeneity using a Dirichlet a=10 distribution, with 400—
700 records per device and ~60% overlap, simulating slight
variations among similar users. The third scenario
represented moderate heterogeneity (a=1), with 200-800
records per device and 30% overlap, reflecting real-world
diversity in activity, health, and usage. The fourth and most
challenging scenario simulated severe heterogeneity, with
highly specialized devices containing 100-900 records and
only 10% overlap, testing the system’s ability to learn from
vastly different data distributions. Fig. 4 illustrates how
decreasing Dirichlet o values increase variability and
imbalance across devices, highlighting the impact of data
heterogeneity on federated learning performance.

Data Distribution Across Devices in Different Heterogeneity Scenarios
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Fig. 4 Distribution of patient records per device under four
simulated data heterogeneity scenarios using Dirichlet
partitioning (o values). As o decreases, data becomes more
non-1ID, resulting in increased variation in local dataset

sizes across devices
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Table 1: Comprehensive Dataset Statistics

Data Source Total Unique Male Female Age Data Types Collection
Records Patients Patients Patients Range Period
PhysioNet MIT- 48 47 28 19 23-89 ECG, 1975-
IBIH records patients (60%) (40%) years Annotations1979
PhysioNet 67,830 30,500 18,300 12,200 16-95 ECG, PPG, 2001-
MIMIC-III records patients (60%) (40%) years Blood 2012
'Waveforms Pressure
MIMIC-III 4,156,45046,520 25,000 21,520 18-  Vital Signs, 2001-
Clinical records patients (54%) (46%) 100+ Labs, 2012

year  Medications
|Accelerometer 15,000 500 280 220 20-75 3-axis 2018-
Data records patients (56%) (44%) year Motion, 2020
Activity
ICombined Total 4,239,32877,067 43,608 33,459 16-  Multi- 1975-
(57%) (43%) 100+ modal 2020

The data preprocessing pipeline was designed to simulate
the type of processing that would occur on actual wearable
devices while maintaining privacy throughout the process.
Raw physiological signals undergo noise reduction to
remove artifacts caused by device movement, electrical
interference, and other sources of measurement error [31].
Feature extraction algorithms identify relevant patterns in the
physiological signals, such as heart rate variability measures,
sleep stage indicators, and activity intensity levels. Privacy-
preserving data normalization ensures that sensitive
information about individual baseline health measurements
cannot be inferred from the processed data. Instead of using
global statistics for normalization, each device computes
local statistics with differential privacy protection, ensuring
that the normalization process itself does not leak
information about individual users. Table 2 shows the
detailed breakdown of data types and their characteristics
across different healthcare monitoring categories.

Table 2: Healthcare Data Types and Characteristics

Measurement Frequency Typical Pr / Clinical

Type Range Sensitivity Importance

Cardiac Heart Rate Continuous 40-200 bpm High Critical

Monitoring

Cardiac Heart Rate Every 5 10-300 ms  Very High High

Monitoring  Variability minutes

Blood Systolic/Diastolic Every 15 80-200 Very High Critical

Pressure minutes mmHg

|Activity Steps per Day ~ Daily 0-50,000 Medium  Moderate

Tracking steps

|Activity Calories Burned Daily 1200-4000 Medium  Moderate

Tracking kcal

Sleep Sleep stages Throughout REM, Deep, High High

Monitoring the night Light

Sleep Sleep Duration ~ Nightly 4-12 hours  High High

Monitoring

Respiratory Breathing Rate  Continuous 8-30 High High
breaths/min

Temperature Body Every hour 96-102°F  High High
Temperature

Medication Dosage Timing As needed Variable Very High Critical

The dataset also includes synthetic data generated to
supplement real patient records and test edge cases not well
represented in historical clinical databases. Generative
models, trained on real datasets, produced synthetic records
with additional differential privacy to prevent revealing
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information about actual patients. Healthcare professionals
validated the combined dataset to ensure realism and clinical
relevance by reviewing statistical distributions, correlations
among health measurements, and the progression of
conditions over time.

V. EXPERIMENTAL SETUP

The experimental setup was designed to evaluate the
privacy-preserving federated learning system under realistic
conditions resembling real-world wearable healthcare
deployments. It simulates technical and practical challenges
across thousands of smartwatches, fitness trackers, and other
health monitors. The architecture includes simulated client
devices, edge computing servers, and central coordination
servers. Each client device mirrors real wearable
specifications, with 4GB RAM, ARM Cortex-A78
equivalent processing, and battery constraints to realistically
limit participation in federated learning rounds.

The network simulation replicates real-world connectivity
conditions for wearable devices, including high-quality
WiFi, variable cellular connections, and intermittent
coverage, with random assignment of network conditions to
test system adaptability. Edge servers represent intermediate
healthcare network resources, equipped with AMD EPYC
processors and 64GB RAM to handle aggregation and
coordination tasks. The central coordination server manages
global model updates and communication across networks,
using high-performance Intel Xeon processors and 128GB
RAM to support thousands of simulated devices [32].

Table 3: Detailed Experimental System Configuration

RAM Storage Network Power Purpose

Typ Simulation
Client 1000 ARM 4GB 128GB WiFi/CellularBattery =~ Wearable

Devices Cortex- limited  simulation
A78
Edge 10 AMD  64GB 2TB  Gigabit Always on Regional
Servers EPYC SSD  Ethernet aggregation
7542
Central 1 Intel 128GB10TB 10 Gigabit  Always on Global
Server Xeon SSD coordination
Gold
6248
Network 1 Intel i9- 32GB 1TB  Virtual Always on Connectivity|
Simulator 12900k SSD  networks simulation
Monitoring 1 Intel i7- 16GB 500GB Monitoring Always on Performance
System 12700k SSD  network tracking

The software environment uses specialized frameworks
for federated learning and differential privacy. TensorFlow
Federated 0.20.0 implements the federated learning
algorithms, while Opacus 1.4.0 provides differential privacy
mechanisms integrated with the models. Privacy parameters
are carefully configured: the differential privacy budget
(epsilon) varies from 1.0 to 8.0, balancing privacy and model
accuracy, and delta is set to le-5 for high-confidence
guarantees. The system runs 200 communication rounds,
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sufficient for convergence. Local training on client devices
is adaptive, with 3—-10 epochs depending on data size,
computational power, and battery status.

Table 4: Comprehensive Training Configuration Parameters

Parameter ~ Parameter Value Default Adaptation Impacton Impact or

Category Name Range Value Strategy Privacy Accuracy
Privacy Epsilon (g) 1.0-8.0 4.0 Adaptive Higher=  Higher =
Protection based on data less private more
sensitivity accurate
Privacy Delta (3) le-6to le-5  Fixed Lower=  Minimal
[Protection le-4 conservative more impact
value private
Privacy Noise 0.5-2.0 1.0 Based on Higher=  Higher =
Protection Multiplier epsilon and more less
dataset size  private accurate
Training Communication50-300 200 Until More More
Process Rounds convergence rounds =  rounds =
more better
exposure accuracy
Training Local Epochs 3-10 5 Device More More
Process capability ~ epochs = epochs =
adaptive more better local

computationlearning
Training Batch Size 16-64 32 Memory and Larger Larger

IProcess data size batches = batches =
adaptive less noise  more stable
impact training
OptimizationLearning Rate 0.001- 0.005 Adaptive No direct  Critical for
0.01 decay impact convergence|
schedule
OptimizationGradient 0.5-2.0 1.0 Based on Essential ~ Prevents
Clipping gradient for DP gradient
norms explosion

The experimental protocol evaluates system performance
under realistic conditions, including normal operation,
degraded network connectivity, device failures, and
adversarial attacks. Battery simulation models how power
constraints affect device participation, with devices reducing
training activity as battery depletes. Data distribution
scenarios range from uniform to highly skewed, testing the
system’s ability to handle different levels of heterogeneity.
Comprehensive  monitoring tracks privacy  budget
consumption, model accuracy, communication overhead,
computational usage, and Dbattery patterns without
compromising privacy. Baseline comparisons include
standard federated learning, centralized learning, and basic
differential privacy without secure aggregation, all tested
under the same hardware and network conditions.

VI. PERFORMANCE MATRIX

Evaluating the privacy-preserving federated learning
system requires metrics that assess machine learning
performance alongside privacy, security, and deployment
considerations. Privacy protection is paramount, measured
using complementary metrics to assess resistance against
potential attacks. The differential privacy budget (epsilon)
quantifies cumulative privacy cost, with lower values
indicating stronger protection; values between 1.0-8.0 are
suitable, with below 4.0 providing strong privacy. Privacy
attack resistance is tested against threats such as membership
inference attacks, which attempt to determine if a specific
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patient’s data was included; the system aims to limit attack
success to near-random guessing (~50%).

Attribute inference attacks try to determine sensitive health
information about patients based on partial knowledge and
access to the trained model. For healthcare applications, it is
crucial that attackers cannot reliably infer sensitive attributes
such as specific medical conditions, medication usage, or
demographic information from model outputs. The target is
to limit attribute inference accuracy to less than 10% above
random guessing for sensitive health attributes. Property
inference attacks attempt to determine statistical properties
of the training dataset, such as the prevalence of certain
health conditions or demographic distributions. While some
statistical information must be preserved for the model to be
useful, the privacy protection mechanisms should prevent
inference of detailed statistical properties that could
compromise patient privacy.

Table 5: Privacy Protection Evaluation Metrics

Privacy MetricDescription Measurement Target

Method Value
Privacy Cumulative Differential 1.0-8.0 Lower = All inference
Budget (g) privacy cost privacy theory stronger attacks
protection

Membership Success rate Adversarial =~ <55% Prevents Membership
Inference of testing patient inference
|Accuracy membership identification

attacks
|Attribute Success rate Targeted <Random Protects Attribute
Inference of attribute inference +10%  sensitive inference
|Accuracy attacks testing health data
Property Success rate Statistical <Random Protects Property
Inference of property analysis + 5% population  inference
|Accuracy attacks attacks statistics
Model Ability to  Reconstruction<1% Prevents data Model inversion
Inversion reconstruct attacks reconstruction
Success training data
Privacy Loss Rate of Budget ControlledSustainable Budget
Rate privacy tracking over decay long-term  exhaustion

budget time operation

consumption

Model accuracy and clinical utility metrics evaluate
whether the privacy-preserving system maintains predictive
performance for healthcare applications. Classification
accuracy targets above 85% to ensure clinical usefulness,
with thresholds adjusted for critical versus general
applications. Precision and recall provide further insights,
especially for imbalanced datasets, with high recall
prioritized to avoid missing serious health conditions.

The AUC-ROC metric evaluates the model’s ability to
distinguish between different health conditions across
decision thresholds, with values above 0.85 indicating good
and above 0.90 indicating excellent performance. Clinical
relevance metrics assess whether the model’s predictions
align with established medical knowledge, identify known
risk factors, respond appropriately to patient health changes,
and provide actionable insights consistent with clinical
guidelines.
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Table 6: Model Performance and Clinical Utility Metrics

Performance C: ation o Clinical Importance Me

Metric Method Value Application Level Frequency

Overall Correct >85% General High Every

|Accuracy predictions / health communication
Total predictions monitoring round

Precision True positives / >80% Disease Very High Per health

(Positive (True positives + detection condition

Predictive  False

\Value)

Recall True positives /  >90% Critical Critical ~ Per health

(Sensitivity) (True positives + condition condition
False negatives) screening

Specificity ~ True negatives / >85% Avoiding  High Per health
(True negatives + false alarms condition
False positives)

IF1-Score 2 x (Precision x >85% Balanced  High Per health
Recall) / performance condition
(Precision +
Recall)

JAUC-ROC  Area under ROC >0.85 Risk Very High Per prediction
curve stratification task

Calibration Reliability of ~ <10% Treatment High Across

[Error probability decision probability
predictions support ranges

System efficiency and deployment metrics evaluate
performance under real-world constraints, including limited
computational resources, battery life, network bandwidth,
and intermittent connectivity. Communication efficiency
measures data transmission volume and frequency, aiming to
minimize overhead while preserving model performance and
privacy. Computational efficiency assesses local training
time, memory usage, and the impact of privacy mechanisms,
ensuring practicality for deployment on actual smartwatches
and fitness trackers.

Battery consumption analysis evaluates the impact of
federated learning on device battery life, critical for user
acceptance. Scalability metrics assess performance as device
numbers increase, including communication, coordination,
and model quality. Robustness metrics measure system
reliability under dropouts, network outages, and malicious
participants [Table 7].

Table 7: System Efficiency and Deployment Metrics

Target Measurement Impact on  Optimizatio
S Values Units Deployment n Pr
Communicatio Data per round <IMB perBytes Network  High
n Efficiency device transmitted costs
Communicatio Communicatio <10 roundsRounds perBattery High
n Efficiency  n frequency  perday  time period  usage
Computational Training timeTraining Time per localUser Medium
Efficiency per epoch time  perupdate experience
epoch
Computational Memory usage <2GB peakRAM Device High
[Efficiency consumption  compatibilit
y
Battery Impact Additional <5% dailyPercentage User Very High
power battery battery drain  acceptance
consumption
Scalability Performance Linear Performance Network ~ Medium
with devicedegradatio vs. participants deployment
count n
IRobustness Performance  <10% Accuracy System High
with dropouts accuracy reduction reliability
loss
IConvergence Rounds to<150 Communicatio Time toMedium
Speed target accuracy rounds n rounds deployment
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The evaluation framework also considers long-term
sustainability, assessing privacy budget maintenance over
extended operation, detecting model drift, and measuring
adaptation to new health data or device capabilities. Quality
assurance metrics ensure continuous high standards by
monitoring corrupted data, malfunctioning devices, security
breaches, and regulatory compliance. Continuous logging
and analysis track performance trends, enabling early
detection of potential issues and supporting the long-term
viability of privacy-preserving federated learning for
healthcare applications.

VII. RESULTS AND DISCUSSION

The privacy-preserving federated learning system was
evaluated across multiple scenarios, demonstrating effective
collaborative learning while maintaining patient privacy.
Differential privacy-maintained epsilon values between 1.2
and 6.8, with strong protection below 4.0. Membership
inference attacks were limited to near-random success (51.2—
53.8%), attribute inference attacks achieved only 8.3—12.1%
above random guessing, and property inference attacks
remained below 7%, showing robust protection of individual
and population-level health data (Fig. 5a—5b).

Table 8: Privacy Protection Metrics

Privacy Metric Range/Value Performance Indicator

Differential Privacy (g) 1.2-6.8 Strong protection (g < 4.0 for
healthcare)

Membership Inference Attack  51.2% - 53.8% Near-random performance (robust

Success protection)

Attribute Inference Attack 8.3% -12.1% Above random guessing (strong

|Accuracy resistance)

Property Inference Attack <7% Above random baseline (effective

|Accuracy protection)

Model accuracy results exceeded clinical utility thresholds
across all healthcare tasks. The federated learning system
achieved 87.3-92.1% accuracy for cardiac arrhythmia
detection, 89.7% for heart rate variability analysis, and
85.4% for sleep pattern classification, showing that privacy
mechanisms minimally impact clinical utility. Precision
ranged from 82.1% to 91.3%, recall from 85.7% to 93.2%,
and AUC-ROC consistently exceeded 0.87, reaching 0.91—
0.94 for cardiac monitoring tasks (Fig. 5¢—5d).

Table 9: Model Accuracy and Performance Metrics

Healthcare Federated  Centralized  Precision  Recall
Application Learning Learning Range Range
Accuracy  Accuracy
Cardiac 82.1% -
Arrhythmia 92.1% 91.3% - 0.94
Detection 93.2%
Heart Rate 89.7% - 82.1% - 85.7%  >0.87
Variability 91.3% -
Analysis 93.2%
Sleep Pattern 85.4% - 82.1% - 85.7% >0.87
Classification 91.3% -
93.2%
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Communication efficiency analysis showed that network
overhead was minimized, with average data per device per
round at 0.8 MB, below the 1 MB target. The system
converged in 165 rounds, fewer than the 180-200 rounds of
baseline methods. Computational efficiency on simulated
wearables was practical, with local training completing in
18-28 seconds and memory usage peaking at 1.6 GB.
Battery consumption increased by only 3.2% per day, within
acceptable limits for continuous operation.

Table 10: System Efficiency Metrics

Efficiency Metric Measured  Target/Baseline Performance Value

Value
Communication per Device 0.8 MB
er Round
Communication Rounds to 165 rounds  180-200 baseline v Improved
Convergence

<1MB target ¢ Target Met

ILocal Training Time 18-28 seconds - Acceptable

Memory Usage Peak 1.6 GB - Practical for
deployment

/Additional Battery Drain 3.2% Acceptable V Within Limits

limits

Scalability testing with up to 5,000 simulated devices
showed linear performance degradation, with accuracy
dropping less than 2% as participants increased from 100 to
5,000. The system remained stable even with 30% device
dropouts, demonstrating robust operation under realistic
conditions. Data heterogeneity tests indicated effective
handling of varying distributions, with accuracy decreasing
only 1.8% under mild heterogeneity and within 6.2% under
severe heterogeneity. Automated quality control detected
94.7% of corrupted data and 97.3% of device malfunctions,
while attack detection identified 89.2% of simulated
malicious participants. Long-term sustainability analysis
over 12 months showed that privacy budgets could be
maintained via adaptive management, ensuring continued
protection while extending operational lifetime.

Table 11: Scalability and Robustness Results

Test Scenario Confirmation Performance Success Rate

Impact

Device Scalability 100 — 5,000 devices < 2% accuracy  Linear

drop degradation
Device Dropout 30% dropout rate Stable performance/ Robust
Resilience maintained
Data Heterogeneity Minimal overlap 6.2% accuracy  Within
(Severe) drop acceptable range
Data Corruption Automated QC - 94.7% detection
Detection
Device Malfunction Automated QC - 97.3% detection
Detection
Malicious Participant Attack simulation - 89.2% detection
Detection
ILong-term Sustainability 12-month simulation Privacy budget v Adaptive

maintained management
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Fig. 5. Evaluation results of the proposed privacy-preserving
federated learning system across multiple healthcare application
scenarios. (a) Differential privacy epsilon values across
experiments, indicating effective privacy budgeting. (b) Resistance
to membership, attribute, and property inference attacks, all near or
below random guessing baselines. (c) Accuracy of healthcare
models such as arrhythmia detection, HRV analysis, and sleep
classification. (d) Precision, recall, and AUC-ROC metrics across
classification tasks. € Communication and computational
efficiency, showing feasibility for wearable devices. (f) Scalability
and robustness under increased device count and dropout scenarios.

Prior research has validated these results with respect to
instances of privacy-preserving federated learning in healthcare.
Pati et al. demonstrated differential privacy to protect sensitive
health data while preserving model utility [33], and Chen et al.
reported near-random success of membership inference attacks on
federated learning models, which substantiate that secure
aggregation and privacy mechanisms are effective in preserving
patient information [34].

VIII. FUTURE WORK

Future research should focus on optimizing privacy-
preserving federated learning for wearable healthcare
devices, ensuring efficiency, robustness, and long-term
sustainability. Key directions include validating systems
with real patients and institutions, supporting rare disease
and longitudinal studies, enhancing security against attacks,
developing cross-institutional protocols, integrating edge
computing, and enabling continuous model adaptation.
Standardized evaluation frameworks and datasets will
facilitate fair comparisons and practical adoption.

Vol.1, Issue 1 20

IX. CONCLUSION

This study shows that privacy-preserving federated
learning enables collaborative healthcare Al while protecting
patient data. The system maintains high accuracy, handles
heterogeneous wearable device data, and is robust to
connectivity issues and malicious activity. Low
communication and battery overhead make it practical for
real-world deployment, and adaptive privacy management
ensures long-term sustainability. This study demonstrates
that privacy-preserving federated learning is a practical
approach for enabling collaborative healthcare Al without
compromising patient privacy. By combining differential
privacy guarantees with wearable-device optimizations, the
system supports scalable, real-world deployment. The
findings highlight the potential of distributed health data to
advance medical research, improve diagnostics, and enable
personalized treatments, while future work should focus on
multi-modal integration, rare disease applications, and cross-
institutional collaboration under standardized protocols.
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