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Abstract This study explores Genetic Algorithms (GAs) in depth. It highlights their growing impact as powerful optimization 
tools in various scientific domains. Emphasis is placed on their application in resolving Bluetooth channel interference, an 
increasingly critical issue due to the rapid proliferation of wireless devices. Inspired by the principles of natural evolution, the 
pro-posed GA approach optimizes channel allocation by iteratively refining solutions through selection, crossover, and mutation 
operations. The experimental evaluation reveals notable improvements in network performance, including reduced channel 
interference, lower packet loss, and enhanced energy efficiency. In addition to the practical contributions, this paper provides a 
comprehensive review of GA design principles, advantages, limitations, and emerging research directions. The findings 
demonstrate the potential of GAs in delivering scalable, adaptive solutions for dynamic spectrum management in modern 
wireless communication systems. 
 
Index Terms— Metaheuristic; Genetic algorithm; Optimization; Bluetooth interference.  
 

I. INTRODUCTION1 
Genetic algorithms have been widely used in 

optimization problems [1, 2]. Genetic Algorithms (GAs) 
represent a powerful class of metaheuristic optimization 
techniques, inspired by the evolutionary concepts of natural 
selection and survival of the fittest [1, 3]. First introduced 
by John Holland in the 1970s [3], GAs emulates the 
mechanisms of biological evolution namely selection, 
crossover, and mutation to evolve a population of candidate 
solutions toward optimal or near-optimal outcomes [4, 5, 
6]. Each candidate solution, encoded as a chromosome 
composed of individual genes, is assessed using a fitness 
function that guides the algorithm’s iterative refinement 
process [4, 5]. Grounded in Darwinian evolutionary theory, 
GAs draw on nature’s capacity to improve populations over 
successive generations [1, 3]. This biologically inspired 
strategy has been successfully translated into computational 
models that can address complex and large-scale problems 
where traditional deterministic methods often fail [7, 8, 9]. 
Today, GAs is widely used in diverse fields such as 
artificial intelligence, scheduling, robotics, engineering 
design, and data analysis [5, 10, 11]. The strength of GAs 
lies in their population-based nature, which enables broad 
exploration of the solution space and helps avoid 
entrapment in local optima a common limitation in single-

 
 

solution methods like Simulated Annealing and Tabu 
Search [1, 6]. By maintaining genetic diversity through 
mutation and recombination, GAs ensures continued 
exploration and adaptability throughout the optimization 
process [4, 12]. 

This paper applies a GA-based solution to a prominent 
issue in wireless communications: Bluetooth channel 
interference [13, 14]. As the number of Bluetooth-enabled 
devices continues to rise, the finite set of available channels 
leads to significant signal overlap, resulting in degraded 
connection quality, increased latency, and higher energy 
consumption due to repeated data transmissions [13, 14]. 
To address this, we propose an intelligent GA-driven 
approach to optimize channel allocation and minimize 
interference [15–18]. The process begins by generating an 
initial population of random channel assignments. Each 
assignment is evaluated based on the level of interference it 
produces [13, 14]. Through successive generations, the 
algorithm selects high-performing configurations, 
recombines their features via crossover, and introduces 
occasional mutations to explore new possibilities [4, 5, 12]. 
This evolutionary cycle continues until an optimized 
channel distribution is achieved [12, 19]. Experimental 
results demonstrate that GA significantly reduces channel 
interference. It also enhances signal stability, lowers packet 
loss, and improves energy efficiency [13, 15, 17, 18]. These 
findings affirm the potential of Genetic Algorithms as a 
scalable, adaptive solution for dynamic spectrum 
management in modern Bluetooth networks. Moreover, this 
study showcases the broader applicability of GAs in solving 
complex, constraint-sensitive problems in real-world 
systems [7, 15, 17]. 
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II. RELATED WORKS 
Several previous studies have examined interference 

issues in wireless communication channels, particularly in 
networks operating within the 2.4 GHz frequency band, 
such as Wi-Fi and Bluetooth. Traditional solutions like 
static frequency allocation or frequency hopping have often 
been employed, but these methods have shown significant 
limitations in complex or densely populated environments. 
For example, interference from Wi-Fi severely impacts 
Bluetooth and ZigBee, reducing Bluetooth performance by 
up to 41.29% [5]. Similarly, improved coexistence of Wi-Fi 
and Bluetooth using optimized chaotic frequency hopping 
effectively minimizes interference and improves 
connectivity [4]. Recently, genetic algorithms (GAs) have 
emerged as effective tools for optimizing channel allocation 
and reducing interference in Wi-Fi and cellular networks 
[15– 18]. Nevertheless, their application to Bluetooth 
networks remains relatively unexplored, representing a 
crucial research gap. This study aims to fill this gap by 
applying a GA directly to Bluetooth networks to enhance 
channel allocation, reduce interference, and improve 
communication quality in a flexible and adaptive manner 
that responds to changes in the wireless environment. 

Recent research has applied a variety of metaheuristic 
techniques to spectrum and channel-allocation problems in 
wireless systems [15–18]. Particle Swarm Optimization 
(PSO) and Ant Colony Optimization (ACO) have been used 
successfully for overlapping-channel allocation and 
interference-aware resource assignment in wireless and IoT 
networks [16, 17], showing competitive performance with 
respect to convergence speed and solution quality. For 
example, discrete-PSO methods were proposed for 
overlapping channel allocation to reduce inter-channel 
interference and improve fairness in 2.4 GHz networks 
[16]. Similarly, ACO-based approaches have been applied 
to load balancing and interference-aware optimization in 
next-generation wireless systems [17]. Metaheuristics have 
also been adapted specifically for mesh/router placement 
and energy-efficiency optimization in wireless mesh 
networks using genetic-algorithm variants [18]. These 
efforts demonstrate that different metaheuristics can be 
effective for spectrum-management problems and motivate 
a focused study of genetic algorithms for Bluetooth channel 
allocation, which compared with PSO or ACO offers 
flexible chromosome encodings and rich 
crossover/mutation operators suitable for discrete channel 
assignments [4, 17]. 

III. METHODOLOGY 

A. Genetic Algorithm Design 
1) Chromosome Representation 

In genetic algorithms, each potential solution (individual) is 
represented as a chromosome. The type of representation 
depends on the nature of the problem [1, 4]. 

Binary Encoding: This is the most common form of 
encoding. In this encoding, each chromosome is 
represented using a binary string. In binary encoding, every 
chromosome is a string of bits, 0 or 1 [4, 5]. Figure 1 shows 
the hexadecimal encoding. 
 

 
Fig 1. Binary Encoding 

 
In this encoding, each bit shows some characteristics of 

the solution. On the other hand, each binary string 
represents a value. With a smaller number of alleles, several 
chromosomes can be represented. Crossover operations 
possible in binary encoding are 1-point crossover, N-point 
crossover, Uniform crossover, and Arithmetic crossover. 
The Mutation operator possible is Flip. In Flip mutation, 
bits change from 0 to 1 and 1 to 0 based on the generated 
mutation chromosome [4, 5]. This is generally used in the 
Knapsack problem, where binary encoding is used to show 
the presence of items say 1 to denote the presence of an 
item and 0 to denote its absence [5]. 
 
Real-Valued Encoding: In value encoding, each 
chromosome is represented as a string of some value. The 
value can be an integer, real number, character, or object. In 
the case of integer values, the crossover operators applied 
are the same as those applied in binary encoding [4, 6]. 
Values can be anything connected to the problem, from 
numbers, real numbers, or characters to more complex 
objects. Figure 2 shows the value encoding [5]. 
 

 
Fig 2. Value Encoding 

 
Value Encoding can be used in neural networks. This 

encoding is generally use in finding weights for neural 
network. Chromosome's value represents corresponding 
weights for inputs. 
 
Rule-Based Encoding: Utilized for problems requiring 
complex representations, such as neural network design. 
This encoding method allows genetic algorithms to evolve a 
set of structured rules that define decision-making 
processes, making it particularly useful in expert systems, 
fuzzy logic controllers, and reinforcement learning 
applications. It enhances interpretability and adaptability by 
ensuring that solutions are not just optimized numerically 
but also follow predefined logical constraints.  
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2) Fitness Function  
The fitness function is a key element in Genetic Algorithms 
(GAs), used to evaluate the quality of each potential 
solution (chromosome) and determine its suitability for 
solving the given problem [1, 4]. This function depends on 
the nature of the problem and is designed to reflect how 
well the chromosome meets the desired objectives [4]. 
 
How the fitness function works: 
• Evaluating solutions: The fitness function calculates a 
numerical value for each chromosome, representing the 
quality of the proposed solution. The higher this value, the 
better the solution [1, 4]. 
• Selection mechanism: Fitness values are used in the 
selection process, where chromosomes with higher values 
are chosen for crossover to produce the next generation, 
increasing the likelihood of good traits being passed on to 
future generations [4, 14]. 
 
Examples of using fitness functions in different 
applications: 
• In classification problems: The classification accuracy is 
measured based on the ratio of correctly classified samples 
to the total number of samples. 
• In route optimization (e.g., Traveling Salesman Problem - 
TSP): The total distance traveled is calculated, and the 
shortest path is preferred [7]. 
• In neural network design: The fitness function is used to 
measure the prediction error rate, aiming to minimize this 
error as much as possible [4, 5]. 
 
Fitness Function Normalization and Interpretation:  
In this study, the fitness function was normalized to the 
range [0, 1], where 0 represents the best possible outcome 
(minimal interference) and 1 represents the worst 
(maximum interference) [1, 4]. For each candidate channel 
allocation, an interference score (I) was calculated as the 
number of Bluetooth device pairs sharing the same or 
adjacent channels, weighted by their signal strength and 
distance [4, 15, 18]. The normalized fitness value was then 
computed using the following equation: 
 

 
 

where and represent the minimum and maximum 
interference values observed across all generations. In this 
context, corresponds to the optimized interference 
level after the algorithm converges, while corresponds 
to the initial interference level before optimization [4, 15]. 
Therefore, when the results indicate that the final fitness 
value was close to 0, it means that the optimized channel 
allocation achieved near-minimal interference and that the 
Genetic Algorithm effectively reduced signal overlap 
between Bluetooth devices. In our experimental evaluation, 
the final normalized fitness value reached 0.07 after 200 
generations, confirming that the proposed Genetic 

Algorithm successfully minimized interference and 
converged toward an optimal or near-optimal channel 
distribution. This interpretation provides a quantitative 
understanding of how the algorithm’s performance 
improves over generations and validates the observed 
enhancement in network metrics such as the 83% reduction 
in interfering channels and the 80% decrease in packet loss 
presented in Table 2. 
 

3) Genetic Operations 
 
1. Selection: Chromosomes with higher fitness are selected 
for crossover to produce the next generation. Common 
selection methods include: 
 
• Roulette wheel selection: Also known as fitness 
proportionate selection, is based on selecting individuals 
according to their fitness. The higher an individual’s fitness, 
the larger their “slice” on the roulette wheel [1, 4]. A 
random number is generated to select the individual whose 
range matches the generated number. However, one 
drawback of this method is that it may lead to premature 
convergence to a local optimum due to the dominance of 
individuals with low fitness over better solutions [1, 4]. 
 
Roulette Ant Wheel Selection (RAWS) is an improvement 
over the traditional Roulette Wheel Selection method. It 
incorporates Inner Cyclic Ants (ICA) and Outer Cyclic 
Ants (OCA) to enhance the selection process. This 
algorithm combines randomness with a focus on selecting 
the best parents from the population, improving the 
effectiveness of choosing good individuals [14]. Roulette 
wheel has chromosomes sequentially arranged as the 
numbers in the roulette game, as shown in Figure 3. The 
inner circle of the wheel has to be filled with Inner Cyclic 
Ants (ICA), and the outer circle of the wheel has to be filled  

Fig 3. Roulette Ant Wheel 
 
 
with Outer Cyclic Ants (OCA), both of which traverse the 
chromosomes [14]. In the proposed algorithm, Roulette 
wheel is not rotated but the ants (ICA and OCA) used 
traversed the wheel through clockwise and anticlockwise 
directions respectively. The chromosome of the population 
in the wheel is also represented by its fitness value 
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calculated by the fitness function described in previous 
section. 
• Tournament Selection: A random group of individuals is 
chosen, and the best among them is selected. 
 
2. Crossover: Crossover: Genes from two parents are 
combined to produce a new offspring [1, 4]. 
Types of crossovers: 
•  Single-Point Crossover: A single point is selected along 
the chromosome, and the chromosome is split at this point 
to exchange parts between the parents [1, 4]. 
•  Multi-Point Crossover: Multiple points are selected along 
the chromosome to divide it and exchange parts between 
the parents [1, 4]. 
• Uniform Crossover: Genes are exchanged randomly 
between parents at all positions, so each gene from the 
father can come from either parent [4]. 
•  Reverse Crossover: Parts are exchanged between parents 
in a reversed or opposite manner [4]. 
• Blending Crossover: Genes are blended in a way that 
combines the good traits of both parents into the offspring 
[11]. 
•  Multi-Parent Crossover: More than two parents are used 
to creating the offspring, with genes taken from multiple 
sources [11]. 
•  Generational Crossover: It combines both old and new 
generations over several generations [4]. 
•   Tree-Based Crossover: This type is used for crossover in 
tree-based representations (like neural networks), where 
parts of the tree are exchanged between the parents. 
• Partial Crossover: Specific parts of one parent’s 
chromosome are selected and combined with the other 
parent’s chromosome [4]. 
•   Mutation: Random changes are introduced in some genes 
of the chromosome to maintain genetic diversity and avoid 
getting stuck in local optima. 
 

4) Hyper-parameters  
Hyper-parameters in genetic algorithms involve 
determining several parameters that affect the algorithm’s 
performance, such as: 
• Population Size: The number of individuals in each 
generation. Increasing the size may give rise to a broader 
exploration of solutions, but it also increases computational 
cost.  
• Number of Generations: The number of iterations the 
algorithm executes before stopping. This depends on the 
complexity of the problem and the available time.  
• Crossover Rate: The percentage of individuals undergoing 
crossover in each generation. This rate is usually high to 
achieve greater genetic diversity. 
• Mutation Rate: The percentage of individuals subjected to 
mutation in each generation. Low mutation rates are used to 
avoid drastic changes in solutions [1, 4, 11].  
 

5) Tools and Software 
To implement genetic algorithms, several tools and 
software can be used: 

• Python Programming Language: It is one of the most 
widely used languages in this field, due to specialized 
libraries like DEAP.  
• DEAP Library: A Python library that provides tools to 
easily build and implement genetic algorithms.  
• MATLAB: It contains built-in tools for implementing 
genetic algorithms and analyzing results.  
 
These tools have been widely adopted in the scientific 
community for implementing evolutionary and 
metaheuristic algorithms, due to their flexibility and open-
source libraries. For instance, Python’s DEAP framework 
and MATLAB’s Global Optimization Toolbox have been 
extensively used in recent works for designing, testing, and 
visualizing GA-based optimization processes in wireless 
communication and machine learning applications [18–20] 
 

6) Evaluation Metrics To measure the performance of 
a genetic algorithm, several metrics can be used: 

• Convergence Rate: Measures how quickly the algorithm 
reaches the optimal or near-optimal solution.  
• Solution Quality: Evaluates how close the resulting 
solution is to the known or expected optimal solution.  
• Genetic Diversity: Measures the diversity of individuals in 
the population, helping to avoid converging to local optima.  

IV. USING A GENETIC ALGORITHM TO SOLVE THE 
BLUETOOTH INTERFERENCE PROBLEM 

In places where numerous Bluetooth devices, such as 
wireless headphones, keyboards, and mice—are used 
simultaneously, they all share the same 2.4 GHz frequency 
range. However, with only 79 available channels, problems 
arise when multiple devices select the same or adjacent 
channels, causing signal interference. This interference 
leads to several complications. Connections weaken or 
become unreliable, resulting in lost data, delays, or 
disruptions. Moreover, devices drain their batteries faster 
because they constantly need to resend lost information. 
Lastly, the overall performance of these wireless devices 
decreases, as they compete for limited channel space. In 
short, the more Bluetooth devices present, the more likely 
they are to interfere with each other, resulting in frustration, 
poor connectivity, and shorter battery life. Solving this 
issue is essential for a smooth and reliable Bluetooth 
experience.  
 
Proposed Solution:  
Assign Bluetooth channels to devices strategically to reduce 
interference. By ensuring each device operates on a 
separate or sufficiently distant channel from others, 
available frequencies are used more effectively. This 
strategy greatly improves overall network performance, 
leading to more stable connections and better user 
experience.  
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Table 1: Steps of the Genetic Algorithm for solving 
Bluetooth interference. 

 

  Initial Population  

random solutions 
 
Fitness Evaluation 

Measure the interference 

Selection  

best solutions 

Crossover 

Combine solutions 

Mutation 

random changes 

New Generation 

improved solutions 

Optimal Solution 

minimizes interference 
 

 
Fig. 4 Initial random allocation of Bluetooth channels. 

 
To effectively address Bluetooth channel interference and 
enhance wireless communication quality, the Genetic 
Algorithm (GA) is applied. Inspired by natural evolution, 
this algorithm gradually evolves towards the optimal 
channel distribution. The process begins by creating a 
random set of initial solutions, assigning random 
frequencies to each Bluetooth device from the available 

channels. Each solution is then evaluated using a Fitness 
Function, which measures how much interference occurs 
when multiple devices use the same channel. Higher 
interference means poorer performance, weaker 
connections, and greater energy consumption due to 
repeated data transmissions.  
 
Therefore, the best solutions are those with the least 
interference. After evaluation, the algorithm selects the 
best-performing solutions (Selection)—those with minimal 
interference—to pass onto the next stage. Then, through a 
Crossover process, parts of these top solutions are 
combined to produce a new set of solutions inheriting better 
characteristics. To maintain diversity and prevent the 
algorithm from getting stuck in suboptimal solutions (local 
optima), a Mutation step is introduced, randomly modifying 
some channels to explore different possibilities. 
 
 These steps are repeated over multiple generations, 
continuously improving solutions until the most effective 
channel distribution is found. Ultimately, this process 
results in an optimized allocation of Bluetooth channels, 
reducing the number of devices that share the same 
frequency. This significantly minimizes interference, 
resulting in more stable and efficient connections, reduced 
power consumption, and enhanced user experience through 
faster responses and better data transfer efficiency. This 
approach enables intelligent spectrum management, 
ensuring Bluetooth devices operate harmoniously without 
disrupting each other.  
 

 
Fig 5. Process of selection, crossover, and mutation 

 

 
Fig 6. Optimized Bluetooth channel distribution 
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V. COMPARISON OF NETWORK PERFORMANCE BEFORE 
AND AFTER GENETIC ALGORITHM-BASED CHANNEL 

OPTIMIZATION 
A comparison was made between channel distribution 
before and after applying the Genetic Algorithm (GA) 
through the following steps: 
 
• Collecting Initial Data: Channels were randomly assigned 
to devices, and interference levels were measured. 
• Applying the Genetic Algorithm: Channel distribution 
was optimized using selection, crossover, and mutation 
processes to minimize interference. 
• Analyzing Results: The improvement in connection 
quality was assessed by measuring the reduction in 
interfering devices, packet loss, and battery consumption. 
 
Results, after implementing the GA a significant reduction 
in channel interference was observed, leading to improved 
connection performance. The following table summarizes 
the key results.  
 

Table 2. Performance Improvement Metrics Before and 
After Applying Genetic Algorithm 

 
Visual Data Analysis: 
Graphical representations were created to illustrate the 
channel distribution before and after optimization using the 
following plots: 
• Histogram: Displays the number of devices using each 
channel 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 7. Histogram of channel usage before and after 
optimization 

 

 
Fig 8. Heatmap showing interference levels before and after 
optimization 

VI. CHALLENGES 
Efficient channel allocation in Bluetooth-dense 
environments poses a significant challenge due to the 
limited number of available channels and the high volume 
of simultaneously operating devices. This congestion often 
leads to severe signal interference, diminishing 
communication quality. Furthermore, some channels may 
experience higher levels of interference based on the 
physical proximity and activity of neighboring devices. 
Therefore, a well-designed channel distribution strategy is 
essential to minimize overlap, reduce interference, and 
maintain stable and reliable connections. 
 
Genetic Algorithms (GAs) have proven to be a powerful 
tool for solving such optimization problems, thanks to their 
flexibility and global search capabilities. However, several 
challenges limit their practical effectiveness: 
Computational intensity: The performance of GAs often 
requires large populations and numerous generations, 
resulting in high computational demands that may not be 
feasible for real-time or resource-limited systems. 
 
Susceptibility to local optima: Without adequate genetic 
diversity, GAs can converge prematurely to suboptimal 
solutions, missing better alternatives. 
 
Parameter dependency: The success of GAs relies heavily 
on fine-tuning various parameters, such as mutation and 
crossover rates, which can be complex and require 
extensive experimentation to optimize. 
Effectively addressing these issues is crucial for 
maximizing the benefits of Genetic Algorithms in 
managing Bluetooth channel distribution, particularly in 
dynamic and high-interference environments. 
 

VII. RESULTS AND CONCLUSIONS 
The results obtained by applying the Genetic Algorithm to 
solve the Bluetooth channel interference problem were 
highly successful, yielding a fitness score close to 0 or 1. 
Such a low fitness value signifies that very few or no 
devices ended up sharing the same or similar channels, 
effectively reducing interference to a minimum. This result 

Metric Before 
GA 

After 
GA 

Improvement 
(%) 

Number of Interfering 
Channels 

30 5 83% 

Packet Loss Rate 15% 3% 80% 

Average Delay (ms) 50 10 80% 

Battery Consumption 
(%) 

70 40 42% 
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demon-states that the algorithm successfully identified an 
optimal or near-optimal channel al-location, substantially 
enhancing communication quality by significantly 
minimizing interference, data loss, and connection 
instability. This outcome underscores the power of genetic 
algorithms in solving complex interference challenges. By 
exploring numerous potential solutions efficiently and 
progressively refining them over multiple generations, the 
algorithm ensures more stable and efficient Blue-tooth 
communication. Users benefit from lower latency, higher 
data transfer speeds, and improved battery life due to fewer 
retransmissions. Ultimately, the proposed model effectively 
managed the frequency spectrum. It allowed Bluetooth 
devices to operate harmoniously, minimizing interference 
and improving connection quality.  To further validate the 
performance of the proposed algorithm, a comparative 
analysis was conducted against other popular metaheuristic 
approaches from recent literature, as summarized in Table 
3. 
 
Interpretation 
This comparative summary highlights that the proposed GA 
achieved the highest measured interference reduction 
among the reviewed methods, while maintaining moderate 
computational complexity. Although PSO and ACO 
techniques have shown faster convergence in some wireless 
applications, they require more parameter tuning and may 
exhibit reduced adaptability in highly dynamic 
environments such as Bluetooth networks. In contrast, the 
GA approach balances exploration and exploitation 
effectively, producing consistent and stable improvements 
across multiple performance metrics. 
 

VIII. FUTURE WORK 
Dynamic Future research should aim to develop adaptive 
mechanisms that dynamically adjust the parameters of 
genetic algorithms during execution to enhance 
performance and prevent premature convergence. 
Combining Genetic Algorithms with other optimization 
techniques such as Particle Swarm Optimization or Ant 
Colony Optimization could further improve the balance 
between exploration and exploitation. Moreover, 
implementing parallel or distributed versions of the 
algorithm can significantly reduce computation time and 
enhance scalability. Incorporating context-awareness, 
including device location and real-time interference levels, 
would allow for more intelligent and adaptive channel 
allocation. Finally, validating the approach in real-world 
environments is crucial to assessing its practicality and 
robustness, while integrating energy consumption into the 
optimization process can ensure a better trade-off between 
performance and power efficiency, particularly for IoT and 
wearable applications. 
 
 
 
 

Table 3. Comparative Analysis of Genetic Algorithm and 
Other Metaheuristic Approaches: 
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