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Abstract This study explores Genetic Algorithms (GAs) in depth. It highlights their growing impact as powerful optimization
tools in various scientific domains. Emphasis is placed on their application in resolving Bluetooth channel interference, an
increasingly critical issue due to the rapid proliferation of wireless devices. Inspired by the principles of natural evolution, the
pro-posed GA approach optimizes channel allocation by iteratively refining solutions through selection, crossover, and mutation
operations. The experimental evaluation reveals notable improvements in network performance, including reduced channel
interference, lower packet loss, and enhanced energy efficiency. In addition to the practical contributions, this paper provides a
comprehensive review of GA design principles, advantages, limitations, and emerging research directions. The findings
demonstrate the potential of GAs in delivering scalable, adaptive solutions for dynamic spectrum management in modern

wireless communication systems.

Index Terms— Metaheuristic; Genetic algorithm; Optimization; Bluetooth interference.

I. INTRODUCTION

Genetic  algorithms have been widely wused in
optimization problems [1, 2]. Genetic Algorithms (GAs)
represent a powerful class of metaheuristic optimization
techniques, inspired by the evolutionary concepts of natural
selection and survival of the fittest [1, 3]. First introduced
by John Holland in the 1970s [3], GAs emulates the
mechanisms of biological evolution namely selection,
crossover, and mutation to evolve a population of candidate
solutions toward optimal or near-optimal outcomes [4, 5,
6]. Each candidate solution, encoded as a chromosome
composed of individual genes, is assessed using a fitness
function that guides the algorithm’s iterative refinement
process [4, 5]. Grounded in Darwinian evolutionary theory,
GAs draw on nature’s capacity to improve populations over
successive generations [1, 3]. This biologically inspired
strategy has been successfully translated into computational
models that can address complex and large-scale problems
where traditional deterministic methods often fail [7, 8, 9].
Today, GAs is widely used in diverse fields such as
artificial intelligence, scheduling, robotics, engineering
design, and data analysis [5, 10, 11]. The strength of GAs
lies in their population-based nature, which enables broad
exploration of the solution space and helps avoid
entrapment in local optima a common limitation in single-
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solution methods like Simulated Annealing and Tabu
Search [1, 6]. By maintaining genetic diversity through
mutation and recombination, GAs ensures continued
exploration and adaptability throughout the optimization
process [4, 12].

This paper applies a GA-based solution to a prominent
issue in wireless communications: Bluetooth channel
interference [13, 14]. As the number of Bluetooth-enabled
devices continues to rise, the finite set of available channels
leads to significant signal overlap, resulting in degraded
connection quality, increased latency, and higher energy
consumption due to repeated data transmissions [13, 14].
To address this, we propose an intelligent GA-driven
approach to optimize channel allocation and minimize
interference [15—18]. The process begins by generating an
initial population of random channel assignments. Each
assignment is evaluated based on the level of interference it
produces [13, 14]. Through successive generations, the
algorithm  selects  high-performing  configurations,
recombines their features via crossover, and introduces
occasional mutations to explore new possibilities [4, 5, 12].
This evolutionary cycle continues until an optimized
channel distribution is achieved [12, 19]. Experimental
results demonstrate that GA significantly reduces channel
interference. It also enhances signal stability, lowers packet
loss, and improves energy efficiency [13, 15, 17, 18]. These
findings affirm the potential of Genetic Algorithms as a
scalable, adaptive solution for dynamic spectrum
management in modern Bluetooth networks. Moreover, this
study showcases the broader applicability of GAs in solving
complex, constraint-sensitive problems in real-world
systems [7, 15, 17].

December, 2025



II. RELATED WORKS

Several previous studies have examined interference
issues in wireless communication channels, particularly in
networks operating within the 2.4 GHz frequency band,
such as Wi-Fi and Bluetooth. Traditional solutions like
static frequency allocation or frequency hopping have often
been employed, but these methods have shown significant
limitations in complex or densely populated environments.
For example, interference from Wi-Fi severely impacts
Bluetooth and ZigBee, reducing Bluetooth performance by
up to 41.29% [5]. Similarly, improved coexistence of Wi-Fi
and Bluetooth using optimized chaotic frequency hopping
effectively ~minimizes interference and  improves
connectivity [4]. Recently, genetic algorithms (GAs) have
emerged as effective tools for optimizing channel allocation
and reducing interference in Wi-Fi and cellular networks
[15— 18]. Nevertheless, their application to Bluetooth
networks remains relatively unexplored, representing a
crucial research gap. This study aims to fill this gap by
applying a GA directly to Bluetooth networks to enhance
channel allocation, reduce interference, and improve
communication quality in a flexible and adaptive manner
that responds to changes in the wireless environment.

Recent research has applied a variety of metaheuristic
techniques to spectrum and channel-allocation problems in
wireless systems [15-18]. Particle Swarm Optimization
(PSO) and Ant Colony Optimization (ACO) have been used
successfully for overlapping-channel allocation and
interference-aware resource assignment in wireless and IoT
networks [16, 17], showing competitive performance with
respect to convergence speed and solution quality. For
example, discrete-PSO methods were proposed for
overlapping channel allocation to reduce inter-channel
interference and improve fairness in 2.4 GHz networks
[16]. Similarly, ACO-based approaches have been applied
to load balancing and interference-aware optimization in
next-generation wireless systems [17]. Metaheuristics have
also been adapted specifically for mesh/router placement
and energy-efficiency optimization in wireless mesh
networks using genetic-algorithm variants [18]. These
efforts demonstrate that different metaheuristics can be
effective for spectrum-management problems and motivate
a focused study of genetic algorithms for Bluetooth channel
allocation, which compared with PSO or ACO offers
flexible chromosome encodings and rich
crossover/mutation operators suitable for discrete channel
assignments [4, 17].

III. METHODOLOGY

A. Genetic Algorithm Design
1) Chromosome Representation
In genetic algorithms, each potential solution (individual) is
represented as a chromosome. The type of representation
depends on the nature of the problem [1, 4].
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Binary Encoding: This is the most common form of
encoding. In this encoding, each chromosome is
represented using a binary string. In binary encoding, every
chromosome is a string of bits, 0 or 1 [4, 5]. Figure 1 shows
the hexadecimal encoding.

Chromosomel | 110101110010

Chromosome2 | 011010011101

Fig 1. Binary Encoding

In this encoding, each bit shows some characteristics of
the solution. On the other hand, each binary string
represents a value. With a smaller number of alleles, several
chromosomes can be represented. Crossover operations
possible in binary encoding are 1-point crossover, N-point
crossover, Uniform crossover, and Arithmetic crossover.
The Mutation operator possible is Flip. In Flip mutation,
bits change from 0 to 1 and 1 to 0 based on the generated
mutation chromosome [4, 5]. This is generally used in the
Knapsack problem, where binary encoding is used to show
the presence of items say 1 to denote the presence of an
item and 0 to denote its absence [5].

Real-Valued Encoding: In value encoding, each
chromosome is represented as a string of some value. The
value can be an integer, real number, character, or object. In
the case of integer values, the crossover operators applied
are the same as those applied in binary encoding [4, 6].
Values can be anything connected to the problem, from
numbers, real numbers, or characters to more complex
objects. Figure 2 shows the value encoding [5].

Chromosomel | 1.23,2.12,3.14,0.34,4.62
Chromosome2 | ABDJEIFJDHDDLDFLFEGT
Fig 2. Value Encoding

Value Encoding can be used in neural networks. This
encoding is generally use in finding weights for neural
network. Chromosome's value represents corresponding
weights for inputs.

Rule-Based Encoding: Utilized for problems requiring
complex representations, such as neural network design.
This encoding method allows genetic algorithms to evolve a
set of structured rules that define decision-making
processes, making it particularly useful in expert systems,
fuzzy logic controllers, and reinforcement learning
applications. It enhances interpretability and adaptability by
ensuring that solutions are not just optimized numerically
but also follow predefined logical constraints.
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2) Fitness Function
The fitness function is a key element in Genetic Algorithms
(GAs), used to evaluate the quality of each potential
solution (chromosome) and determine its suitability for
solving the given problem [1, 4]. This function depends on
the nature of the problem and is designed to reflect how
well the chromosome meets the desired objectives [4].

How the fitness function works:

+ Evaluating solutions: The fitness function calculates a
numerical value for each chromosome, representing the
quality of the proposed solution. The higher this value, the
better the solution [1, 4].

+ Selection mechanism: Fitness values are used in the
selection process, where chromosomes with higher values
are chosen for crossover to produce the next generation,
increasing the likelihood of good traits being passed on to
future generations [4, 14].

Examples functions in different
applications:

* In classification problems: The classification accuracy is
measured based on the ratio of correctly classified samples
to the total number of samples.

* In route optimization (e.g., Traveling Salesman Problem -
TSP): The total distance traveled is calculated, and the
shortest path is preferred [7].

* In neural network design: The fitness function is used to
measure the prediction error rate, aiming to minimize this
error as much as possible [4, 5].

of using fitness

Fitness Function Normalization and Interpretation:

In this study, the fitness function was normalized to the
range [0, 1], where O represents the best possible outcome
(minimal interference) and 1 represents the worst
(maximum interference) [1, 4]. For each candidate channel
allocation, an interference score (I) was calculated as the
number of Bluetooth device pairs sharing the same or
adjacent channels, weighted by their signal strength and
distance [4, 15, 18]. The normalized fitness value was then
computed using the following equation:

I -
F= min

Imﬂ.x - Imin

where fminand fmaxrepresent the minimum and maximum
interference values observed across all generations. In this
context, fmincorresponds to the optimized interference
level after the algorithm converges, while Tmaxcorresponds
to the initial interference level before optimization [4, 15].

Therefore, when the results indicate that the final fitness
value was close to 0, it means that the optimized channel
allocation achieved near-minimal interference and that the
Genetic Algorithm effectively reduced signal overlap
between Bluetooth devices. In our experimental evaluation,
the final normalized fitness value reached 0.07 after 200
generations, confirming that the proposed Genetic
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Algorithm  successfully minimized interference and
converged toward an optimal or near-optimal channel
distribution. This interpretation provides a quantitative
understanding of how the algorithm’s performance
improves over generations and validates the observed
enhancement in network metrics such as the 83% reduction
in interfering channels and the 80% decrease in packet loss
presented in Table 2.

3) Genetic Operations

1. Selection: Chromosomes with higher fitness are selected
for crossover to produce the next generation. Common
selection methods include:

* Roulette wheel selection: Also known as fitness
proportionate selection, is based on selecting individuals
according to their fitness. The higher an individual’s fitness,
the larger their “slice” on the roulette wheel [1, 4]. A
random number is generated to select the individual whose
range matches the generated number. However, one
drawback of this method is that it may lead to premature
convergence to a local optimum due to the dominance of
individuals with low fitness over better solutions [1, 4].

Roulette Ant Wheel Selection (RAWS) is an improvement
over the traditional Roulette Wheel Selection method. It
incorporates Inner Cyclic Ants (ICA) and Outer Cyclic
Ants (OCA) to enhance the selection process. This
algorithm combines randomness with a focus on selecting
the best parents from the population, improving the
effectiveness of choosing good individuals [14]. Roulette
wheel has chromosomes sequentially arranged as the
numbers in the roulette game, as shown in Figure 3. The
inner circle of the wheel has to be filled with Inner Cyclic
Ants (ICA), and the outer circle of the wheel has to be filled

Fig 3. Roulette Ant Wheel

with Outer Cyclic Ants (OCA), both of which traverse the
chromosomes [14]. In the proposed algorithm, Roulette
wheel is not rotated but the ants (ICA and OCA) used
traversed the wheel through clockwise and anticlockwise
directions respectively. The chromosome of the population
in the wheel is also represented by its fitness value
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calculated by the fitness function described in previous
section.

* Tournament Selection: A random group of individuals is
chosen, and the best among them is selected.

2. Crossover: Crossover: Genes from two parents are
combined to produce a new offspring [1, 4].

Types of crossovers:

 Single-Point Crossover: A single point is selected along
the chromosome, and the chromosome is split at this point
to exchange parts between the parents [1, 4].

* Multi-Point Crossover: Multiple points are selected along
the chromosome to divide it and exchange parts between
the parents [1, 4].

¢ Uniform Crossover: Genes are exchanged randomly
between parents at all positions, so each gene from the
father can come from either parent [4].

* Reverse Crossover: Parts are exchanged between parents
in a reversed or opposite manner [4].

* Blending Crossover: Genes are blended in a way that
combines the good traits of both parents into the offspring
[11].

* Multi-Parent Crossover: More than two parents are used
to creating the offspring, with genes taken from multiple
sources [11].

* Generational Crossover: It combines both old and new
generations over several generations [4].

* Tree-Based Crossover: This type is used for crossover in
tree-based representations (like neural networks), where
parts of the tree are exchanged between the parents.

* Partial Crossover: Specific parts of one parent’s
chromosome are selected and combined with the other
parent’s chromosome [4].

* Mutation: Random changes are introduced in some genes
of the chromosome to maintain genetic diversity and avoid
getting stuck in local optima.

4) Hyper-parameters
Hyper-parameters in  genetic  algorithms  involve
determining several parameters that affect the algorithm’s
performance, such as:
* Population Size: The number of individuals in each
generation. Increasing the size may give rise to a broader
exploration of solutions, but it also increases computational
cost.
* Number of Generations: The number of iterations the
algorithm executes before stopping. This depends on the
complexity of the problem and the available time.
* Crossover Rate: The percentage of individuals undergoing
crossover in each generation. This rate is usually high to
achieve greater genetic diversity.
* Mutation Rate: The percentage of individuals subjected to
mutation in each generation. Low mutation rates are used to
avoid drastic changes in solutions [1, 4, 11].

5) Tools and Software
To implement genetic algorithms,
software can be used:

several tools and
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* Python Programming Language: It is one of the most
widely used languages in this field, due to specialized
libraries like DEAP.

* DEAP Library: A Python library that provides tools to
easily build and implement genetic algorithms.

* MATLAB: It contains built-in tools for implementing
genetic algorithms and analyzing results.

These tools have been widely adopted in the scientific
community for  implementing evolutionary  and
metaheuristic algorithms, due to their flexibility and open-
source libraries. For instance, Python’s DEAP framework
and MATLAB’s Global Optimization Toolbox have been
extensively used in recent works for designing, testing, and
visualizing GA-based optimization processes in wireless
communication and machine learning applications [ 18-20]

6) Evaluation Metrics To measure the performance of
a genetic algorithm, several metrics can be used.:
» Convergence Rate: Measures how quickly the algorithm
reaches the optimal or near-optimal solution.
* Solution Quality: Evaluates how close the resulting
solution is to the known or expected optimal solution.
* Genetic Diversity: Measures the diversity of individuals in
the population, helping to avoid converging to local optima.

IV. USING A GENETIC ALGORITHM TO SOLVE THE
BLUETOOTH INTERFERENCE PROBLEM

In places where numerous Bluetooth devices, such as
wireless headphones, keyboards, and mice—are used
simultaneously, they all share the same 2.4 GHz frequency
range. However, with only 79 available channels, problems
arise when multiple devices select the same or adjacent
channels, causing signal interference. This interference
leads to several complications. Connections weaken or
become unreliable, resulting in lost data, delays, or
disruptions. Moreover, devices drain their batteries faster
because they constantly need to resend lost information.
Lastly, the overall performance of these wireless devices
decreases, as they compete for limited channel space. In
short, the more Bluetooth devices present, the more likely
they are to interfere with each other, resulting in frustration,
poor connectivity, and shorter battery life. Solving this
issue is essential for a smooth and reliable Bluetooth
experience.

Proposed Solution:

Assign Bluetooth channels to devices strategically to reduce
interference. By ensuring each device operates on a
separate or sufficiently distant channel from others,
available frequencies are used more effectively. This
strategy greatly improves overall network performance,
leading to more stable connections and better user
experience.
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Table 1: Steps of the Genetic Algorithm for solving
Bluetooth interference.

Initial Population

\

random solutions

Fitness Evaluation

Measure the interference

Selection

best solutions

Crossover

Combine solutions

Mutation

random changes

New Generation

improved solutions

Optimal Solution

minimizes interference

Bluetooth Interference Problem (Before Solution)
PN

N Channels
PN mEm Channel 1
= Channel 2
Channel 3
$e
NS
VRS
N7 N
N N1
7\

Fig. 4 Initial random allocation of Bluetooth channels.

To effectively address Bluetooth channel interference and
enhance wireless communication quality, the Genetic
Algorithm (GA) is applied. Inspired by natural evolution,
this algorithm gradually evolves towards the optimal
channel distribution. The process begins by creating a
random set of initial solutions, assigning random
frequencies to each Bluetooth device from the available
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channels. Each solution is then evaluated using a Fitness
Function, which measures how much interference occurs
when multiple devices use the same channel. Higher
interference  means  poorer  performance, weaker
connections, and greater energy consumption due to
repeated data transmissions.

Therefore, the best solutions are those with the least
interference. After evaluation, the algorithm selects the
best-performing solutions (Selection)—those with minimal
interference—to pass onto the next stage. Then, through a
Crossover process, parts of these top solutions are
combined to produce a new set of solutions inheriting better
characteristics. To maintain diversity and prevent the
algorithm from getting stuck in suboptimal solutions (local
optima), a Mutation step is introduced, randomly modifying
some channels to explore different possibilities.

These steps are repeated over multiple generations,
continuously improving solutions until the most effective
channel distribution is found. Ultimately, this process
results in an optimized allocation of Bluetooth channels,
reducing the number of devices that share the same
frequency. This significantly minimizes interference,
resulting in more stable and efficient connections, reduced
power consumption, and enhanced user experience through
faster responses and better data transfer efficiency. This
approach enables intelligent spectrum management,
ensuring Bluetooth devices operate harmoniously without
disrupting each other.

Genetic Algorithm: Selection, Crossover, and Mutation

Selection Crossover Mutation New Generation

Comone Parts
of Solutions

Select Best
Solutions

Randomly Modify
Channels

mproved
Solutions

4 A

Inherit Best Traits Introduce Diversity

Fig 5. Process of selection, crossover, and mutation

Before Mutation Chl Ch2 Ch3 Cha Chs
After Mutation chl Ch2 Chs cha Ch3

[Random changes introduce dwersity'
and help find better solutions

Fig 6. Optimized Bluetooth channel distribution
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V. COMPARISON OF NETWORK PERFORMANCE BEFORE
AND AFTER GENETIC ALGORITHM-BASED CHANNEL
OPTIMIZATION

A comparison was made between channel distribution
before and after applying the Genetic Algorithm (GA)
through the following steps:

* Collecting Initial Data: Channels were randomly assigned
to devices, and interference levels were measured.

* Applying the Genetic Algorithm: Channel distribution
was optimized using selection, crossover, and mutation
processes to minimize interference.

* Analyzing Results: The improvement in connection
quality was assessed by measuring the reduction in
interfering devices, packet loss, and battery consumption.

Results, after implementing the GA a significant reduction
in channel interference was observed, leading to improved
connection performance. The following table summarizes
the key results.

Table 2. Performance Improvement Metrics Before and
After Applying Genetic Algorithm

Metric Before | After | Improvement
GA GA (%)

Number of Interfering | 30 5 83%

Channels

Packet Loss Rate 15% 3% 80%

Average Delay (ms) 50 10 80%

Battery =~ Consumption | 70 40 42%

(%0)

Visual Data Analysis:

Graphical representations were created to illustrate the
channel distribution before and after optimization using the
following plots:

* Histogram: Displays the number of devices using each
channel

Comparison of Channel Distribution Before and After Optimization

10 == Before GA
m—pfter GA

Number of Devices
o ®

-

o 10 20 30 40 50 60 70 80
Channel Number

Fig 7. Histogram of channel usage before and after
optimization
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Heatmap of Channel Interference

li o8

- 0.6

-0.4

Iﬁ )

Fig 8. Heatmap showing interference levels before and after
optimization

VI. CHALLENGES

Efficient  channel allocation in  Bluetooth-dense
environments poses a significant challenge due to the
limited number of available channels and the high volume
of simultaneously operating devices. This congestion often
leads to severe signal interference, diminishing
communication quality. Furthermore, some channels may
experience higher levels of interference based on the
physical proximity and activity of neighboring devices.
Therefore, a well-designed channel distribution strategy is
essential to minimize overlap, reduce interference, and
maintain stable and reliable connections.

Genetic Algorithms (GAs) have proven to be a powerful
tool for solving such optimization problems, thanks to their
flexibility and global search capabilities. However, several
challenges limit their practical effectiveness:

Computational intensity: The performance of GAs often
requires large populations and numerous generations,
resulting in high computational demands that may not be
feasible for real-time or resource-limited systems.

Susceptibility to local optima: Without adequate genetic
diversity, GAs can converge prematurely to suboptimal
solutions, missing better alternatives.

Parameter dependency: The success of GAs relies heavily
on fine-tuning various parameters, such as mutation and
crossover rates, which can be complex and require
extensive experimentation to optimize.

Effectively addressing these issues is crucial for
maximizing the benefits of Genetic Algorithms in
managing Bluetooth channel distribution, particularly in
dynamic and high-interference environments.

VII. RESULTS AND CONCLUSIONS

The results obtained by applying the Genetic Algorithm to
solve the Bluetooth channel interference problem were
highly successful, yielding a fitness score close to 0 or 1.
Such a low fitness value signifies that very few or no
devices ended up sharing the same or similar channels,
effectively reducing interference to a minimum. This result
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demon-states that the algorithm successfully identified an
optimal or near-optimal channel al-location, substantially
enhancing communication quality by significantly
minimizing interference, data loss, and connection
instability. This outcome underscores the power of genetic
algorithms in solving complex interference challenges. By
exploring numerous potential solutions efficiently and
progressively refining them over multiple generations, the
algorithm ensures more stable and efficient Blue-tooth
communication. Users benefit from lower latency, higher
data transfer speeds, and improved battery life due to fewer
retransmissions. Ultimately, the proposed model effectively
managed the frequency spectrum. It allowed Bluetooth
devices to operate harmoniously, minimizing interference
and improving connection quality. To further validate the
performance of the proposed algorithm, a comparative
analysis was conducted against other popular metaheuristic
approaches from recent literature, as summarized in Table
3.

Interpretation

This comparative summary highlights that the proposed GA
achieved the highest measured interference reduction
among the reviewed methods, while maintaining moderate
computational complexity. Although PSO and ACO
techniques have shown faster convergence in some wireless
applications, they require more parameter tuning and may
exhibit reduced adaptability in highly dynamic
environments such as Bluetooth networks. In contrast, the
GA approach balances exploration and exploitation
effectively, producing consistent and stable improvements
across multiple performance metrics.

VIII. FUTURE WORK

Dynamic Future research should aim to develop adaptive
mechanisms that dynamically adjust the parameters of
genetic  algorithms during execution to enhance
performance and prevent premature convergence.
Combining Genetic Algorithms with other optimization
techniques such as Particle Swarm Optimization or Ant
Colony Optimization could further improve the balance
between exploration and exploitation. = Moreover,
implementing parallel or distributed versions of the
algorithm can significantly reduce computation time and
enhance scalability. Incorporating context-awareness,
including device location and real-time interference levels,
would allow for more intelligent and adaptive channel
allocation. Finally, validating the approach in real-world
environments is crucial to assessing its practicality and
robustness, while integrating energy consumption into the
optimization process can ensure a better trade-off between
performance and power efficiency, particularly for IoT and
wearable applications.
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Table 3. Comparative Analysis of Genetic Algorithm and
Other Metaheuristic Approaches:

Algorithm | Accuracy /| Time Notes /
Interference | Complexity Reference
Reduction (Empirical)
Proposed 83% O (P x G x C), | Tuned
GA(this reduction in | where P = | mutation
work) interfering population size, | and
channels G = number of | crossover
(from 30 to | generations, C = | rates;
5); Packet | chromosome normalized
loss evaluation cost. | fitness
decreased Moderate achieved
from 15% to | runtime on | (final F =
3%; Average | MATLAB/Pytho | 0.07).
delay reduced | n.
from 50 ms to
10 ms.
Discrete- Reported Generally faster | Based on
PSO improved convergence but | Qin et al.,
(example) fairness and | sensitive to | 2024 [14].
reduced parameter
overlap in 2.4 | tuning.
GHz wireless
deployments.
ACO-based | Effective for | Higher per- | Based on
method load-aware iteration Alam et
channel computation due | al., 2024
assignment to  pheromone | [15].
and SINR | update process.
improvement
in IoT and
WLAN
systems.
Other GA | Demonstrated | Similar Based on
variants efficient computational Ussipov et
(e.g., router cost as standard | al., 2024
MEGA) placement GA; depends on | [16].
and energy- | encoding
aware scheme.
coverage
optimization.
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