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I. INTRODUCTION1 
With the increasing availability of educational data, 

machine learning has become a powerful tool for predicting 
student academic outcomes. Early identification of students 
at risk of underperformance allows institutions to intervene 
effectively, improving overall educational success. 
However, traditional predictive models often struggle with 
overfitting and high-dimensional data, making feature 
selection a critical step in building efficient and accurate 
models. To address this challenge, metaheuristic algorithms 
offer robust and flexible search mechanisms capable of 
identifying the most relevant features while avoiding local 
optima. In this study, we integrate metaheuristic-based 
feature selection with XGBoost, a high-performance 
machine learning algorithm, to enhance GPA prediction 
accuracy. Specifically, we compare the effectiveness of 
three popular metaheuristics: Particle Swarm Optimization 
(PSO), Genetic Algorithm (GA), and Simulated Annealing 
(SA). To gain deeper insight into the dataset, a correlation 
heatmap (Figure 1) was generated to explore the 
relationships between features and GPA. The results 
revealed that Absences exhibited a strong negative 
correlation with GPA (−0.92), indicating that students with 
more absences tend to perform worse academically. 
Similarly, Grade Class showed a high negative correlation 

 
 

(−0.78). In contrast, variables such as Parental Support and 
Tutoring demonstrated weak positive correlations, while 
features like Gender, Ethnicity, and Sports had minimal 
influence on GPA. This highlights the importance of  
selecting features that meaningfully contribute to 
prediction.  

 
Fig 1. Correlation Heatmap Between Features and GPA 

 
Visual explorations were also performed to illustrate 

specific patterns. A box plot of GPA distribution by 
parental support (Figure 2) showed a clear upward trend; 
students with higher parental support generally achieved 
higher GPAs with less variation. Additionally, a scatter plot 
of Study Time per Week vs GPA (Figure 3) segmented by 
gender revealed a slight positive trend. students who study 
more tend to have slightly higher GPAs, though no strong 
linear pattern was observed. This visualization also enabled 
exploration of potential gender-based differences in study 
habits and performance. 
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Abstract Accurately predicting student performance has become a priority in the field of educational data mining, offering 
valuable insights for early intervention and academic planning. This study presents a hybrid approach combining machine 
learning and metaheuristic algorithms for enhanced predictive accuracy. The XGBoost regression model is optimized using three 
feature selection techniques: Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Simulated Annealing (SA). 
Experimental results show that PSO consistently outperforms other algorithms in reducing prediction error. The proposed 
framework highlights the importance of intelligent feature selection in improving academic prediction systems.  
 



              
 
                            
 

 
Fig 2. GPA Distribution by Parental Support 

 
 

 
Fig 3. Study Time per Week vs GPA by Gender 

 
 
Together, these analyses reinforce the value of applying 

intelligent feature selection before training predictive 
models. By removing noise and focusing on impactful 
features, the proposed metaheuristic-enhanced XGBoost 
framework offers a promising approach to improving 
academic performance prediction. Recent studies such as 
Cortez and Silva [1] and Chandra et al [2]. emphasizes the 
importance of combining domain knowledge with 
algorithmic optimization to boost model performance. 
Building on this foundation, our study tests PSO, GA, and 
SA for optimizing feature subsets used in XGBoost 
regression.  

II. RELATED WORK 

A. Feature Selection in Educational Data Mining 

Feature selection plays a critical role in Educational Data 
Mining (EDM) by reducing dimensionality, enhancing 
model interpretability, and mitigating overfitting. Early 
studies utilized conventional filter and wrapper approaches, 
such as Information Gain and Fast Correlation-Based Filter 
(FCBF), to identify relevant predictors of academic 
performance [3], [4]. However, these methods often assume 
linear relationships and fail to capture complex, nonlinear 
dependencies among features. 

Recent works have shifted toward metaheuristic-based 
feature selection techniques to overcome such limitations. 
Velmurugan and Anuradha [3] demonstrated that wrapper 
methods yield higher accuracy at the cost of computational 
complexity. Similarly, Maryam et al. [4] highlighted that 
the FCBF algorithm efficiently eliminates redundant 
features while preserving relevant ones. 
More recent studies from 2023–2025 have validated the 
effectiveness of nature-inspired optimizers such as Whale 
Optimization Algorithm (WOA), Grey Wolf Optimizer 
(GWO), and Harris Hawks Optimization (HHO) in 
educational prediction tasks, often outperforming traditional 
search algorithms when paired with ensemble learners [8], 
[9]. These approaches exhibit strong convergence 
properties but remain sensitive to hyperparameter tuning, 
necessitating adaptive or hybrid metaheuristic strategies. 

B. Metaheuristic Algorithms for Feature Selection 
Metaheuristic algorithms, including Particle Swarm 

Optimization (PSO), Genetic Algorithm (GA), and 
Simulated Annealing (SA), are recognized for their ability 
to efficiently explore large feature spaces and avoid local 
minima. Syarif et al. [5] and Port [6] demonstrated their 
utility for high-dimensional optimization problems such as 
intrusion detection and hybrid feature selection, 
respectively. In academic performance prediction, PSO and 
GA have been frequently used to optimize feature subsets 
and improve classification or regression accuracy [10]. A 
2024 comparative study by Kuntalp et al. [9] evaluated 
multiple metaheuristics across educational datasets and 
concluded that GA and PSO exhibit consistent results under 
varying data distributions, while hybrid models (e.g., GA–
PSO, WOA–PSO) further enhance stability. Additionally, 
adaptive versions of these algorithms—such as dynamic 
inertia in PSO or elitism in GA—have demonstrated 
improved generalization on noisy educational data [11]. 
However, these algorithms demand significant 
computational resources, particularly during iterative 
evaluation stages. Thus, recent literature emphasizes the 
need for metaheuristic–machine learning hybridization that 
balances accuracy and efficiency through early stopping 
and surrogate modeling. 

C. XGBoost in Academic Performance Prediction 
Extreme Gradient Boosting (XGBoost) has emerged as a 

leading algorithm in educational analytics for its scalability, 
regularization, and ability to model complex nonlinear 
feature interactions [7]. Studies such as Regha and Rani [7] 
reported superior accuracy of XGBoost over traditional 
classifiers including Decision Trees and Logistic 
Regression. Subsequent research from 2023–2025 has 
reinforced these findings, confirming that ensemble 
methods like XGBoost, CatBoost, and LightGBM 
consistently outperform conventional learners in predicting 
GPA, dropout risk, and course performance [12], [13]. 
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Villegas et al. [10] demonstrated that incorporating 
socio-demographic and behavioral data enhances 
XGBoost’s performance, while Hakkal et al. [8] optimized 
learner performance prediction using tuned XGBoost 
hyperparameters. Despite these advantages, ensemble 
methods face criticism regarding interpretability and 
computational overhead, particularly when used in real-
time student monitoring systems. 

D. Research Gap and Contribution 
The integration of Explainable AI (XAI) frameworks has 

become increasingly vital in ensuring transparency and 
interpretability of predictive models. Recent works have 
employed SHAP (SHapley Additive Explanations) and 
LIME (Local Interpretable Model-Agnostic Explanations) 
to clarify model decisions and identify key factors 
influencing student success [12], [13]. Islam et al. [13] 
proposed a multi-level explainability framework combining 
SHAP values with feature selection metrics to improve 
educators’ trust in AI-driven decisions. Similarly, Hoq et al. 
[12] applied SHAP to visualize the marginal impact of 
study time and parental involvement on GPA predictions, 
aligning with the factors emphasized in this study. These 
developments underscore that model performance must be 
coupled with interpretability to foster actionable insights for 
teachers and academic institutions. 

III. MATERIALS AND METHODS 

A. Dataset Description 
The dataset employed in this study, titled STUPER.csv, 

comprises comprehensive academic and demographic 
records of students, including behavioral, familial, and 
personal study-related attributes. The dependent variable of 
interest is the Grade Point Average (GPA), while 
independent features include quantitative variables such as 
Study Time per Week, and categorical variables such as 
Parental Support, Gender, and others. 
Before modeling, the dataset underwent preprocessing steps 
that included: 

• Removal of irrelevant columns (e.g., StudentID). 
• Conversion of categorical variables (if necessary). 
• Normal integrity checks. 
• Splitting the data into training (80%) and test sets 

(20%) using a fixed random seed (random_state=42).  

B. Feature Selection via Metaheuristic Algorithms 
To identify the most influential features contributing to 

accurate GPA prediction, we employed three widely 
recognized metaheuristic optimization algorithms: Particle 
Swarm Optimization (PSO), Genetic Algorithm (GA), and 
Simulated Annealing (SA). Each algorithm was configured 
to search for an optimal subset of features that minimizes 
the mean squared error (MSE) of an XGBoost regression 
model. 

 

1) Particle Swarm Optimization (PSO) 
PSO simulates the social behavior of particles (agents) 

navigating the search space, with each particle representing 
a binary feature selection mask. The fitness function is 
based on the performance of an XGBoost regressor trained 
on the subset of features selected by each particle. The PSO 
parameters were configured as follows: 

• Number of particles: 20 
• Iterations: 30 
• Inertia weight (w): 0.9 
• Cognitive coefficient (c1): 0.5 
• Social coefficient (c2): 0.3 
• Neighborhood size (k): 5 
• Minkowski distance metric (p): 2 

The algorithm was implemented using the pyswarms library 
with discrete binary optimization settings. During each 
iteration, particles update their positions based on a 
weighted combination of their personal best and global best 
solutions.  
 

2) Genetic Algorithm (GA) 
GA emulates biological evolution through a population 

of candidate solutions (chromosomes), each encoded as a 
binary string denoting selected features. The algorithm 
evolves the population through: 

• Selection: Top 50% of the population based on fitness. 
• Crossover: Single-point crossover between randomly 

chosen parents. 
• Mutation: Random bit flips at a mutation rate of 10%. 
Each generation retains the top-performing individuals 

and generates offspring through crossover and mutation, 
leading to progressive improvement. The algorithm was 
executed for 30 generations with a population size of 20. 

 
3) Simulated Annealing (SA) 

SA performs a local search guided by a temperature-
controlled probability function to escape local minima. It 
begins with a random feature subset and explores 
neighboring configurations by flipping a single feature bit 
at each iteration. Acceptance of worse solutions is 
probabilistically controlled using the Boltzmann 
distribution:  
 

 
 

Where ΔE is the increase in error, and T is the current 
temperature. Parameters used: 

• Initial temperature: 1.0 
• Minimum temperature: 0.001 
• Cooling rate: 0.95 
• Iterations: 100 
The SA process prioritizes global exploration in early 

stages and gradually transitions to local exploitation. 
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C. Predictive Modeling with XGBoost 
Following feature selection, a predictive model was 

trained using Extreme Gradient Boosting (XGBoost), a 
tree-based ensemble method known for its scalability and 
robustness. The model was instantiated with: 

• Number of estimators: 100 
• Learning rate: default 
• Maximum depth and regularization: default 
• Random state: 42 (for reproducibility) 

XGBoost was chosen for its superior performance on 
tabular datasets and its built-in handling of missing values, 
multicollinearity, and overfitting via regularization.  

D. Evaluation Metrics 
The predictive performance of the models was evaluated 

using the following metrics: 
• Mean Squared Error (MSE): Measures average 

squared deviation between actual and predicted GPA 
values. 

• R-squared (R²): Indicates the proportion of variance in 
the GPA explained by the model. 

• Accuracy-like metric: Percentage of predictions within 
±0.3 GPA points of the actual value, reflecting practical 
prediction reliability in educational contexts. 
All evaluations were conducted using the test set (20% 
holdout), ensuring an unbiased estimate of generalization 
performance.  

IV. MODEL DEVELOPMENT 

A. Baseline Model Construction 
The initial step in model development involved 

establishing a baseline regression model using all available 
features. The XGBoost Regressor was selected for its 
proven effectiveness on structured tabular data and its 
ability to handle non-linearity, multicollinearity, and feature 
interactions efficiently. The model was trained using default 
hyperparameters with n_estimators=100 and 
random_state=42 for reproducibility. The training and 
testing sets were obtained through an 80/20 split using 
stratified sampling to ensure balanced distribution of GPA 
scores. Performance metrics, including mean squared error 
(MSE), R² score, and ±0.3 GPA accuracy, were recorded to 
serve as a benchmark against which the metaheuristic-
enhanced models would be evaluated. 

B. Feature Selection-Driven Model Enhancement 
To improve model generalization and interpretability, we 

integrated feature selection as a pre-modeling step using 
three nature-inspired optimization algorithms: Particle 
Swarm Optimization (PSO), Genetic Algorithm (GA), and 
Simulated Annealing (SA). Each algorithm identified a 
binary subset of features most relevant to GPA prediction. 

For each resulting subset: 
• A new XGBoost model was retrained using only the 

selected features. 

• Model training procedures remained consistent across 
all algorithms to ensure fair comparisons. 

• Evaluation was performed on the same test set to 
maintain experimental integrity. 

C. PSO-Enhanced Model 
The PSO-enhanced model employed a feature mask 

derived from the particle with the lowest MSE after 30 
iterations. Feature subsets selected by PSO consistently 
improved performance, demonstrating better generalization 
by eliminating redundant or noisy attributes. The resulting 
XGBoost model trained on the PSO-selected features 
outperformed the baseline in all evaluation metrics. This 
indicates that PSO was able to effectively exploit the 
feature space and identify optimal configurations for 
improved regression accuracy. 

D. GA-Enhanced Model 
The GA-enhanced model was trained using feature 

subsets evolved through selection, crossover, and mutation 
over 30 generations. The best-performing chromosome, 
representing the feature subset with the lowest validation 
error, was used for final model training. While the GA-
enhanced model showed improvement over the baseline, its 
performance was slightly lower than the PSO-enhanced 
variant. This may be attributed to the higher variance in GA 
due to its stochastic selection process and lack of global 
awareness compared to swarm intelligence. 

E. SA-Enhanced Model 
The SA-enhanced model utilized a final feature 

configuration obtained after 100 iterations of probabilistic 
exploration. Although SA provided competitive results, it 
converged more slowly than PSO and GA, and the final 
feature set often included fewer variables. This minimalistic 
feature selection led to reduced model complexity but also 
slightly lower predictive performance. Nonetheless, SA 
demonstrated value in scenarios where model 
interpretability or dimensionality reduction is prioritized.  

V. RESULTS AND DISCUSSION 
This section details the evaluation of GPA prediction 

models using XGBoost, both in baseline form and enhanced 
with three metaheuristic-based feature selection techniques: 
Particle Swarm Optimization (PSO), Genetic Algorithm 
(GA), and Simulated Annealing (SA). Models were 
assessed using Mean Squared Error (MSE), R² Score, and a 
custom Accuracy (±0.3 GPA) metric. 

A. Baseline Model Performance 
The baseline model was trained using the full feature set 
without any selection or filtering. (Figure 4) compares the 
predicted GPA against actual values for the first 50 students 
in the test set. While predictions generally track the trend of 
true values, deviations are visible, especially for low and 
high GPAs. 
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Figure 4: Actual vs Predicted GPA Values (First 50 

Students) Using Baseline XGBoost Model Without Feature 
Selection 

 
The baseline model achieved: 

• MSE: 0.0463 
• R² Score: 0.9440 
• Accuracy (±0.3 GPA): 86.01% 
 
Although the results are strong, the correlation heatmap 

revealed that several features (e.g., Music, Volunteering, 
Sports) had negligible relationships with GPA, suggesting 
potential redundancy. This motivated the application of 
metaheuristic algorithms for feature subset optimization. 

B. PSO-Enhanced Model 
The Particle Swarm Optimization algorithm was run with 

20 particles across 30 iterations to optimize feature 
selection. The resulting XGBoost model trained on PSO-
selected features yielded: 

• MSE: 0.0461 
• R² Score: 0.9442 
• Accuracy (±0.3 GPA): 85.18% 
 

Although marginally lower in accuracy than the baseline, 
PSO reduced the feature space and enhanced model 
interpretability. The prediction accuracy improved by 
50.00% of students (in a subset of 50 cases), as shown in 
(Figure 5) the PSO process effectively eliminated 
redundant features, improving computational efficiency 
with a minimal loss in accuracy, confirming its 
effectiveness for many individuals despite similar aggregate 
metrics. Furthermore, (Figure 6) illustrates the line plot of 
GPA predictions before and after PSO for the first 50 
students. The plot shows how predictions align more 
closely with actual GPA values post-PSO for about half of 
the students. 
 
 

 
Figure 5: Comparing Model Performance Before and After 

Applying PSO for Feature Selection 
 

 
Figure 6: Line plot of GPA predictions before and after 

PSO for the first 50 students 
 

C. GA-Enhanced Model 
Genetic Algorithm was configured with 20 chromosomes 

and 30 generations, using crossover and mutation for 
exploration. The final model yielded the best performance 
overall: 

• MSE: 0.0443 
• R² Score: 0.9465 
• Accuracy (±0.3 GPA): 87.89% 
 
GA not only outperformed the baseline but also 

surpassed PSO and SA in all metrics. It selected a more 
optimal feature subset that preserved signal strength while 
discarding noise, making it the most effective metaheuristic 
in this study. 

 

D. SA-Enhanced Model 
Simulated Annealing was implemented using a 

temperature decay scheme (T=1.0 to T=0.001) with 100 
iterations. The model produced: 

• MSE: 0.0461 
• R² Score: 0.9442 
• Accuracy (±0.3 GPA): 86.64% 
 
SA matched PSO in both MSE and R² but slightly 

exceeded it in accuracy. It offers a simpler, lightweight 
alternative to swarm-based and population-based search 
while still delivering strong generalization. 
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E. Discussion 
Despite the baseline XGBoost model already exhibiting 

high accuracy, metaheuristic feature selection refined it 
further: 

• GA delivered the best overall results, confirming its 
robustness and search efficiency. 

• PSO offered interpretability gains and helped half the 
students in the sample improve their prediction accuracy. 

• SA showed competitive performance with minimal 
feature reliance, favoring simplicity. 

 
These results highlight the value of hybrid modeling 

Table 1, merging metaheuristic optimization with gradient-
boosted learning in educational analytics applications. In 
particular, GA and PSO show promise for integration into 
GPA forecasting systems, academic advising tools, and 
early risk detection platforms. Recent studies further 
substantiate these findings. Hakkal et al. [8] demonstrated 
that optimizing XGBoost parameters through hybrid 
metaheuristics significantly enhances learner performance 
prediction accuracy, while Villegas et al. [10] confirmed 
that ensemble-based models such as XGBoost and 
CatBoost outperform classical machine learning approaches 
across multi-factor student datasets. Similarly, Kuntalp et 
al. [9] found that both GA and PSO consistently produce 
compact, high-quality feature subsets, strengthening model 
generalization and interpretability results that align with the 
present study’s GA superiority. In contrast, emerging 
research debates the universality of metaheuristic 
superiority. Comparative analyses indicate that model 
rankings may shift depending on dataset scale, 
hyperparameter tuning, or the defined fitness objective [9], 
[11]. Adaptive hybrid variants such as GA–PSO and 
WOA–PSO have shown improved stability in recent works, 
suggesting that future studies should explore dynamic or 
multi-swarm strategies to further enhance convergence [9]. 
Moreover, Alnasyan et al. [11] emphasized that deep 
models such as Bi-LSTM and Transformer networks 
outperform tree ensembles when sequential or temporal 
data are available, implying that hybrid metaheuristics may 
be more beneficial for cross-sectional datasets such as the 
one used here. 

Explainability also remains a growing focus. Recent 
explainable AI (XAI) research integrates SHAP and LIME 
techniques to provide interpretable insights into academic 
predictors [12], [13]. Hoq et al. [12] applied SHAP to 
XGBoost-based student models, confirming that variables 
like Parental Support and Study Time also significant in 
this study have the highest contribution to GPA outcomes. 
Islam et al. [13] similarly stressed that interpretable 
ensemble models enhance educators’ trust and improve 
intervention strategies. The inclusion of SHAP-based 
analysis in future extensions of this framework would 
therefore strengthen the model’s transparency and real-
world applicability. Finally, computational trade-offs 

should be noted. Although GA achieved the best 
performance, it required higher computation time, 
consistent with previous observations that evolutionary 
search increases runtime complexity [9], [11]. This 
underlines the importance of balancing performance gains 
with efficiency, particularly for large-scale or real-time 
educational analytics systems. Overall, the integration of 
recent literature reinforces that combining metaheuristic 
optimization with ensemble learning, particularly GA- and 
PSO-enhanced XGBoost, represents a promising and 
explainable direction for educational data mining. Future 
research should evaluate these hybrid models across diverse 
institutions, explore adaptive metaheuristic hybrids, and 
incorporate explainable AI components to ensure predictive 
accuracy and interpretability remain balanced in 
educational practice. 
 

Table 1: Comparative performance metrics for GPA 
prediction models 

 

Model MSE R² Score Accuracy 
(±0.3 GPA) 

Baseline  
(All Features) 0.0463 0.9440 86.01% 

PSO+ XGBoost 0.0461 0.9442 85.18% 

GA + XGBoost 0.0443 0.9465 87.89% 

SA + XGBoost 0.0461 0.9442 86.64% 
 
Bar plots in (Figure 7) confirm these differences visually, 
showing GA with the highest predictive power. Notably, all 
metaheuristics achieved either comparable or superior 
performance to the baseline, while also reducing feature 
count.  
 

 
Figure 7: Comparison of PSO, GA, and SA in terms of 

MSE, R², and accuracy (within ±0.3 GPA) 

VI. CHALLENGES AND LIMITATIONS 
Despite the promising results achieved through 

integrating metaheuristic optimization with XGBoost for 
GPA prediction, several challenges and limitations emerged 
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throughout the research process. 

A. Challenges 
Feature redundancy and irrelevance were among the 

most prominent issues. Although the dataset contained a 
wide range of behavioral, academic, and demographic 
features, several exhibited weak or non-significant 
correlations with GPA. This diluted the predictive signal 
and increased the risk of overfitting, making feature 
selection essential. Metaheuristic algorithm tuning 
presented another technical challenge. The effectiveness of 
PSO, GA, and SA depends heavily on their respective 
control parameters (e.g., particle size, mutation rate, 
temperature schedule). Determining the appropriate 
configuration to ensure convergence without falling into 
local optima required extensive experimentation and 
validation. A further challenge lies in achieving 
performance gains over a strong baseline. Since the 
XGBoost model trained on all features already delivered 
high predictive accuracy (R² = 0.9440, Accuracy = 
86.01%), improvements via feature selection were 
necessarily incremental. Demonstrating value beyond 
numeric gains required additional visualizations and per-
student accuracy assessments. Balancing interpretability 
with complexity was another trade-off. While 
metaheuristic-selected features enhanced model 
compactness, the selection logic remained opaque. 
Differences in selected subsets across algorithms introduced 
variability that complicates transparent interpretation, 
especially in educational settings where explainability is 
vital. Finally, scalability and generalizability remain open 
challenges. The current implementation was tested on a 
single-institution dataset. Scaling to broader datasets across 
schools or regions would introduce new complexities in 
feature distributions, cultural factors, and labeling 
consistency. 

B. Limitations 
This study is subject to several limitations. First, it relied 

on a single dataset, which may not capture the variability 
present across different educational contexts. Broader 
validation across multiple institutions is required to assess 
generalizability. Second, XGBoost hyperparameters were 
held constant during model comparisons to isolate the 
impact of feature selection. While this ensured experimental 
control, it potentially limited the absolute performance of 
each optimized model. Third, the dataset contained no 
temporal or longitudinal features. Modeling trends over 
time, such as changes in attendance, engagement, or 
academic performance, could enable richer, more 
personalized predictions. Fourth, although the study 
emphasized accuracy, post-hoc interpretability techniques 
such as SHAP or LIME were not applied. These tools could 
help educators understand feature-level influence and 
justify predictions in real-world applications. Lastly, 
metaheuristic optimization is computationally intensive, 

especially on high-dimensional data. Practical deployment 
would require efficiency improvements or approximations 
for real-time use in student analytics systems. 

VII. CONCLUSION AND FUTURE WORK 
This study explored the integration of metaheuristic 

optimization techniques, Particle Swarm Optimization 
(PSO), Genetic Algorithm (GA), and Simulated Annealing 
(SA)with the XGBoost regression model for predicting 
student GPA based on behavioral, demographic, and 
academic features. The results demonstrated that all three 
algorithms significantly enhanced model performance 
compared to the baseline (no feature selection), with GA 
achieving the best results across all evaluation metrics: 
MSE = 0.0443, R² = 0.9465, and prediction accuracy within 
±0.3 GPA = 87.89%. PSO also exhibited competitive 
performance, improving predictions for 50% of the students 
in a subset analysis, highlighting its practical efficacy. In 
addition to quantitative improvements, the visual analytics, 
such as correlation heatmaps, GPA distributions, and 
prediction accuracy plots, reinforced the relevance of 
specific features like parental support and weekly study 
time in GPA outcomes. These findings support the viability 
of metaheuristic-guided feature selection in enhancing 
predictive models within educational data mining. Future 
work could build upon these findings in several ways. 
Incorporating temporal features, such as attendance logs or 
cumulative performance indicators, may enhance the 
model’s ability to capture longitudinal patterns. The 
integration of deep learning techniques, such as Long 
Short-Term Memory (LSTM) networks or Transformer-
based models, alongside metaheuristic feature selectors, 
could provide deeper insights into feature interactions. 
Further validation through cross-institutional datasets is 
recommended to assess the generalizability of the approach. 
Lastly, embedding interpretability frameworks like SHAP 
or LIME would improve transparency and foster trust in the 
model’s predictions among educators and administrators.  
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