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Abstract Smartwatches and fitness trackers generate vast amounts of sensitive health data, but traditional machine learning 
requires centralized collection, raising privacy concerns under HIPAA and GDPR. In this work, we present a privacy-preserving 
federated learning framework for smart healthcare devices allowing shared training of models with patient privacy protections. 
Our framework is an Adaptive Differential Privacy Federated Learning (ADP-FL) algorithm, which guarantees privacy protections 
accounting for the data heterogeneity and maintains clinical utility. The system addresses wearable device constraints including 
limited computational resources and non-IID data distributions. Evaluation using PhysioNet and MIMIC-III datasets demonstrate 
87.3-92.1% accuracy for cardiac arrhythmia detection with differential privacy guarantees (epsilon 1.2-6.8). The system limits 
membership inference attacks to near-random performance (51.2-53.8%) and maintains communication efficiency at 0.8 MB per 
device per round with 3.2% battery overhead. Scalability testing with 5,000 devices shows minimal performance degradation, 
establishing federated learning as viable for collaborative healthcare AI while preserving privacy. 
 
Index Terms— federated learning, differential privacy, smart watches, privacy-preserving, healthcare data.  
 

I. INTRODUCTION1 
Smart healthcare devices such as smartwatches and fitness 

trackers are widely used to monitor heart rate, sleep, activity, 
and blood oxygen [1]. While millions benefit from these 
devices, they generate highly sensitive personal data. 
Centralized collection raises privacy concerns about access 
and misuse [2]. Yet, if managed securely, this data holds 
great potential for medical research and improved healthcare. 
Traditional machine learning, however, still relies on 
centralizing data (Fig. 1). Patients’ health data must often be 
sent to central servers, raising discomfort and privacy risks 
[3]. Federated learning offers a way to train AI models across 
institutions without direct data sharing, though it introduces 
its own challenges. Strict regulations like HIPAA (U.S.) and 
GDPR (Europe) require careful handling of health data [4], 
making centralized machine learning difficult. The key issue 
is balancing the use of sensitive wearable data for healthcare 
improvement while protecting privacy. However, several 
obstacles remain: centralized storage increases the chance of 
data leaks or misuse [5]; valuable data often stays isolated 

 
 

and unused due to privacy concerns; strict legal frameworks 
further restrict data sharing even for research [6]; and the 
highly diverse (“non-IID”) nature of wearable data 
complicates model performance. While federated learning 
shows promise, major challenges remain. It struggles with 
the diversity of health data, as each person’s information 
varies by age, lifestyle, condition, and device. Differential 
privacy can protect users but often reduces accuracy when 
applied to such heterogeneous data [7]. Resource limits—
like computing power, memory, and battery—make many 
privacy-preserving methods impractical for wearables [8]. 
These devices also generate continuous temporal data, yet 
most research remains theoretical and overlooks real-world 
implementation on actual devices and users. 

 
Fig. 1. Federated learning system for smartwatches showing 
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local model training and central aggregation adapted from 
Advian 
 

This research addresses these challenges by developing a 
privacy-preserving federated learning system tailored for 
smartwatches and health trackers. The approach aims to 
handle diverse user data, ensure strong privacy with accurate 
results, and operate efficiently on devices with limited 
resources. Using real health datasets such as PhysioNet and 
MIMIC-III [9][10], we propose an Adaptive Differential 
Privacy Federated Learning (ADP-FL) algorithm that 
dynamically adjusts privacy levels based on data 
heterogeneity. The system is designed for real wearable 
devices, tested against existing methods, and demonstrates 
improved performance. Overall, this work provides practical 
solutions that balance privacy protection with useful 
healthcare outcomes, offering a deployable framework for 
researchers and healthcare organizations. This project 
addresses a critical need in modern healthcare by using 
federated learning to enable collaborative machine learning 
while preserving patient privacy and meeting regulatory 
standards. The approach promises stronger privacy 
protection, supports medical research, and helps healthcare 
providers develop better diagnostic and treatment tools 
without violating privacy laws. Researchers gain insights 
from large-scale health data, and technology companies can 
enhance wearable devices while maintaining user trust. The 
paper is structured as follows: Section 2 reviews related 
work; Section 3 introduces the ADP-FL algorithm and 
system design; Section 4 details the experimental setup; 
Section 5 presents performance metrics; Section 6 discusses 
results; Section 7 outlines future work; and Section 8 
concludes. 

II. RELATED WORKS 
The intersection of federated learning, privacy 

preservation, and healthcare has attracted significant 
attention. This section reviews related work and highlights 
gaps addressed by the proposed approach. Federated learning 
has emerged as a promising solution for healthcare, enabling 
multi-institutional AI training without direct data sharing. Li 
et al. [11] showed its potential despite new security and 
privacy concerns, while Rieke et al. [12] surveyed healthcare 
applications across medical domains, emphasizing its ability 
to apply powerful machine learning without data pooling—a 
critical advantage where privacy is essential. Several studies 
have applied federated learning in medical settings, 
particularly for image classification. Sheller et al. [13] 
showed that multi-institutional AI research is possible 
without sharing patient data, while Kaissis et al. [14] 
emphasized privacy-preserving methods in medical imaging 
and noted that over 30% of healthcare organizations have 
faced data breaches. Xu et al. [15] demonstrated federated 
approaches for EHR analysis, enabling hospitals to 
collaborate on predictive modeling while keeping data local. 

However, most work targets traditional clinical 
environments, with little focus on wearable devices. 
Challenges unique to smartwatches and fitness trackers such 
as limited resources, intermittent connectivity, and highly 
personalized data—remain largely unaddressed. Privacy-
preserving machine learning is increasingly critical in 
healthcare. Dwork and Roth [16] defined differential privacy 
as the standard for formal privacy guarantees, while Chen et 
al. [17] applied local differential privacy (LDP) to wearable 
data streams using adaptive budget allocation. Wang et al. 
[18] highlighted the challenges of applying differential 
privacy to physiological data, and Acar et al. [19] explored 
homomorphic encryption and secure multi-party 
computation, though these methods are often too 
computationally heavy for wearables. Xu et al. [20] showed 
that LDP is effective for ECG data when no trusted 
aggregator exists, as noise is added before transmission. 
Despite these advances, existing privacy-preserving methods 
remain limited for wearable health data, particularly in non-
IID scenarios where assumptions of identical data 
distribution rarely hold. Non-IID (non-independent and 
identically distributed) data is a key challenge in federated 
learning, especially in healthcare where patient populations, 
medical conditions, demographics, and data collection vary. 
McMahan et al. [21] introduced FedAvg, which struggles 
with heterogeneous data, while Li et al. [22] proposed 
FedProx and Karimireddy et al. [23] developed SCAFFOLD 
to mitigate client drift. Personalization techniques, including 
meta-learning, multi-task learning, and clustered federated 
learning, have been explored by Jiang et al. [24], and domain 
adaptation methods by Peng et al. [25] help align features 
across clients. However, most solutions focus on accuracy, 
overlooking privacy challenges in non-IID settings. 
Meanwhile, wearable devices like smartwatches provide 
continuous health monitoring. Cadmus-Bertram et al. [26] 
showed that devices such as the Apple Watch track heart rate, 
sleep, activity, and advanced metrics like blood oxygen and 
ECG, generating rich physiological data. 

Edge computing for wearables has been explored by Shi 
et al. [27] to enable real-time health data processing on 
resource-limited devices, reducing transmission needs and 
improving responsiveness. Privacy concerns are significant: 
Vogel et al. [28] highlighted risks from using personal health 
data without consent, and Arachchige et al. [29] showed that 
local differential privacy can protect wearable IoT data while 
preserving some utility. Current research focuses on 
individual device optimization and centralized processing, 
with limited attention to a comprehensive framework that 
addresses the unique challenges of smartwatch federated 
learning—resource constraints, intermittent connectivity, 
highly personalized data, and strong privacy requirements. 

The analysis of existing work reveals several gaps that this 
research addresses. First, federated learning for 
smartwatches and personal health devices remains 
underexplored, requiring approaches tailored to their 
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constraints. Second, current differential privacy methods 
degrade significantly with non-IID data, common in personal 
health monitoring, limiting both privacy and model utility. 
Third, secure aggregation protocols are not optimized for the 
limited computational and energy resources of wearables. 
Fourth, no unified framework simultaneously handles 
differential privacy, secure aggregation, and non-IID data in 
smartwatch federated learning. Finally, most studies rely on 
simulations, with limited validation on real wearable 
datasets. The proposed ADP-FL framework addresses these 
gaps by providing adaptive differential privacy, efficient 
secure aggregation, and robust handling of heterogeneous 
data, offering a comprehensive solution for privacy-
preserving federated learning on resource-constrained 
devices (Fig. 2). 

 

 
Fig. 2. Mapping key research gaps in smartwatch federated 

learning to the corresponding solutions proposed in the ADP-FL 
framework 

 
 

 
Fig. 3 System architecture of federated learning 

III. METHODS AND MATERIALS 
This study develops a privacy-preserving federated 

learning system for smart healthcare devices, including 
smartwatches, fitness trackers, and heart rate monitors. The 
primary goal is to enable collaborative machine learning 
across devices to improve diagnostics and health monitoring 

without exposing sensitive personal data. Traditional 
methods require centralizing all data, creating privacy and 
regulatory risks under laws like HIPAA and GDPR. In the 
proposed framework, each device trains a local model using 
only its user’s data and shares only model parameters, not 
raw health measurements, ensuring complete privacy while 
enabling collective learning (Fig. 3). 

The approach employs differential privacy, adding 
carefully calibrated noise to shared model parameters to 
prevent identification of individual patients while still 
learning useful health patterns. Noise levels are controlled to 
balance strong privacy with model accuracy. The system 
architecture features multiple protection layers: at the device 
level, each smartwatch or fitness tracker runs a lightweight 
machine learning algorithm optimized for wearable data  
such as heart rate, sleep quality, activity levels, and vital 
signs  while respecting computing and battery constraints. 
The federated learning process runs in structured 
communication rounds to minimize battery and bandwidth 
usage. In each round, a subset of devices downloads the 
global model, performs local training with their user’s recent 
health data, and applies differential privacy to the updates 
before sharing. Secure aggregation ensures that only the 
combined model is visible, using cryptographic masks to 
hide individual contributions. To handle non-IID data, 
adaptive algorithms account for variations across users and 
device types, ensuring the global model effectively captures 
diverse health patterns. 

The system handles various health data types continuous 
(e.g., heart rate, blood pressure), discrete (e.g., medication 
intake, symptom events), and periodic assessments (e.g., 
sleep quality, mood)—with tailored privacy mechanisms and 
learning algorithms. Quality control ensures high model 
accuracy by detecting corrupted data, malfunctioning 
devices, and preventing malicious attacks. The framework 
supports dynamic participation, allowing devices to join or 
leave the network based on user preferences, battery, 
connectivity, and data availability, ensuring flexibility for 
real-world deployment. The ADP-FL (Adaptive Different 
purify Private Federated Learning) algorithm dynamically 
configures data distributions, contributions and reliabilities 
based on the model updates and noises. It leverages adaptive 
weighting to process non-IID health data and guarantees fair 
representation for all users with strong privacy protection. 
By combining differential privacy with secure aggregation, 
ADP-FL reduces the information leakage; accelerates the 
model convergence and fits for device variations about 
battery life, connectivity state and computation capacity to 
makes the efficient, accurate and privacy-preserving learning 
feasible on MDs. 

IV. DATASET 
This study uses healthcare datasets to develop and 

evaluate the privacy-preserving federated learning system. 
Primary sources include the PhysioNet and MIMIC-III 
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databases, containing extensive patient records and 
physiological measurements similar to those collected by 
wearable devices, such as heart rate, blood pressure, sleep 
patterns, physical activity, and other vital signs. PhysioNet 
provides over 80,000 patient records from various clinical 
settings over 20+ years, including ECG, PPG, and 
accelerometer data. The MIT-BIH Arrhythmia Database 
within PhysioNet offers 48 high-quality ECG recordings 
from 47 patients, with detailed annotations of heart rhythm 
abnormalities, representing a diverse population (ages 23–
89, 60% male, 40% female) for testing federated learning 
algorithms [30]. 

The MIMIC-III database complements PhysioNet by 
providing clinical data such as vital signs, lab results, 
medication records, and clinical notes from over 46,000 ICU 
patients treated between 2001–2012, totaling millions of 
measurements. To create realistic testing scenarios for 
wearable data, we implemented preprocessing and 
partitioning strategies that reflect continuous data collection, 
individual baseline differences, and daily variability. Four 
data heterogeneity scenarios were simulated. The first, a 
uniform distribution, assigned 500–600 patient records per 
device with similar demographics and health conditions, 
serving as a baseline. The second scenario introduced mild 
heterogeneity using a Dirichlet α=10 distribution, with 400–
700 records per device and ~60% overlap, simulating slight 
variations among similar users. The third scenario 
represented moderate heterogeneity (α=1), with 200–800 
records per device and 30% overlap, reflecting real-world 
diversity in activity, health, and usage. The fourth and most 
challenging scenario simulated severe heterogeneity, with 
highly specialized devices containing 100–900 records and 
only 10% overlap, testing the system’s ability to learn from 
vastly different data distributions. Fig. 4 illustrates how 
decreasing Dirichlet α values increase variability and 
imbalance across devices, highlighting the impact of data 
heterogeneity on federated learning performance. 
 

 
Fig. 4 Distribution of patient records per device under four 

simulated data heterogeneity scenarios using Dirichlet 
partitioning (α values). As α decreases, data becomes more 

non-IID, resulting in increased variation in local dataset 
sizes across devices 

Table 1: Comprehensive Dataset Statistics 
 

Data Source Total 
Records 

Unique 
Patients 

Male 
Patients 

Female 
Patients 

Age 
Range 

Data Types Collection 
Period 

PhysioNet MIT-
BIH 

48 
records 

47 
patients 

28 
(60%) 

19 
(40%) 

23-89 
years 

ECG, 
Annotations 

1975-
1979 

PhysioNet 
MIMIC-III 
Waveforms 

67,830 
records 

30,500 
patients 

18,300 
(60%) 

12,200 
(40%) 

16-95 
years 

ECG, PPG, 
Blood 
Pressure 

2001-
2012 

MIMIC-III 
Clinical 

4,156,450 
records 

46,520 
patients 

25,000 
(54%) 

21,520 
(46%) 

18-
100+ 
year 

Vital Signs, 
Labs, 
Medications 

2001-
2012 

Accelerometer 
Data 

15,000 
records 

500 
patients 

280 
(56%) 

220 
(44%) 

20-75 
year 

3-axis 
Motion, 
Activity 

2018-
2020 

Combined Total 4,239,328 77,067 43,608 
(57%) 

33,459 
(43%) 

16-
100+ 

Multi-
modal 

1975-
2020 

 
The data preprocessing pipeline was designed to simulate 

the type of processing that would occur on actual wearable 
devices while maintaining privacy throughout the process. 
Raw physiological signals undergo noise reduction to 
remove artifacts caused by device movement, electrical 
interference, and other sources of measurement error [31]. 
Feature extraction algorithms identify relevant patterns in the 
physiological signals, such as heart rate variability measures, 
sleep stage indicators, and activity intensity levels. Privacy-
preserving data normalization ensures that sensitive 
information about individual baseline health measurements 
cannot be inferred from the processed data. Instead of using 
global statistics for normalization, each device computes 
local statistics with differential privacy protection, ensuring 
that the normalization process itself does not leak 
information about individual users. Table 2 shows the 
detailed breakdown of data types and their characteristics 
across different healthcare monitoring categories. 
 

Table 2: Healthcare Data Types and Characteristics 
 

Data 
Category 
 

Measurement 
Type 

Frequency Typical 
Range 

Privacy 
Sensitivity 

Clinical 
Importance 

Cardiac 
Monitoring  

Heart Rate Continuous 40-200 bpm High Critical 

Cardiac 
Monitoring 

Heart Rate 
Variability 

Every 5 
minutes 

10-300 ms Very High High 

Blood 
Pressure 

Systolic/Diastolic Every 15 
minutes 

80-200 
mmHg 

Very High Critical 

Activity 
Tracking 

Steps per Day Daily 0-50,000 
steps 

Medium  Moderate 

Activity 
Tracking 

Calories Burned Daily 1200-4000 
kcal 

Medium Moderate 

Sleep 
Monitoring 

Sleep stages Throughout 
the night 

REM, Deep, 
Light 

High High 

Sleep 
Monitoring 

Sleep Duration Nightly 4-12 hours High High 

Respiratory Breathing Rate Continuous 8-30 
breaths/min 

High High 

Temperature Body 
Temperature 

Every hour 96-102°F High High 

Medication Dosage Timing As needed Variable Very High Critical 
 

The dataset also includes synthetic data generated to 
supplement real patient records and test edge cases not well 
represented in historical clinical databases. Generative 
models, trained on real datasets, produced synthetic records 
with additional differential privacy to prevent revealing 

Vol.1, Issue 1                16             December, 2025 



              
 
                            
 
information about actual patients. Healthcare professionals 
validated the combined dataset to ensure realism and clinical 
relevance by reviewing statistical distributions, correlations 
among health measurements, and the progression of 
conditions over time. 

V. EXPERIMENTAL SETUP 
The experimental setup was designed to evaluate the 

privacy-preserving federated learning system under realistic 
conditions resembling real-world wearable healthcare 
deployments. It simulates technical and practical challenges 
across thousands of smartwatches, fitness trackers, and other 
health monitors. The architecture includes simulated client 
devices, edge computing servers, and central coordination 
servers. Each client device mirrors real wearable 
specifications, with 4GB RAM, ARM Cortex-A78 
equivalent processing, and battery constraints to realistically 
limit participation in federated learning rounds. 

The network simulation replicates real-world connectivity 
conditions for wearable devices, including high-quality 
WiFi, variable cellular connections, and intermittent 
coverage, with random assignment of network conditions to 
test system adaptability. Edge servers represent intermediate 
healthcare network resources, equipped with AMD EPYC 
processors and 64GB RAM to handle aggregation and 
coordination tasks. The central coordination server manages 
global model updates and communication across networks, 
using high-performance Intel Xeon processors and 128GB 
RAM to support thousands of simulated devices [32]. 

 
Table 3: Detailed Experimental System Configuration 

 
Component 
Type 

Quantity Processor RAM Storage Network Power 
Simulation 

Purpose 

Client 
Devices 

1000 ARM 
Cortex-
A78 

4GB 128GB WiFi/Cellular Battery 
limited 

Wearable 
simulation 

Edge 
Servers 

10 AMD 
EPYC 
7542 

64GB 2TB 
SSD 

Gigabit 
Ethernet 

Always on Regional 
aggregation 

Central 
Server 

1 Intel 
Xeon 
Gold 
6248 

128GB 10TB 
SSD 

10 Gigabit Always on Global 
coordination 

Network 
Simulator 

1 Intel i9-
12900k 

32GB 1TB 
SSD 

Virtual 
networks 

Always on Connectivity 
simulation 

Monitoring 
System 

1 Intel i7-
12700k 

16GB 500GB 
SSD 

Monitoring 
network 

Always on Performance 
tracking 

 
The software environment uses specialized frameworks 

for federated learning and differential privacy. TensorFlow 
Federated 0.20.0 implements the federated learning 
algorithms, while Opacus 1.4.0 provides differential privacy 
mechanisms integrated with the models. Privacy parameters 
are carefully configured: the differential privacy budget 
(epsilon) varies from 1.0 to 8.0, balancing privacy and model 
accuracy, and delta is set to 1e-5 for high-confidence 
guarantees. The system runs 200 communication rounds, 

sufficient for convergence. Local training on client devices 
is adaptive, with 3–10 epochs depending on data size, 
computational power, and battery status. 

 
Table 4: Comprehensive Training Configuration Parameters 
 
Parameter 
Category 

Parameter 
Name 

Value 
Range 

Default 
Value 

Adaptation 
Strategy 

Impact on 
Privacy 

Impact on 
Accuracy 

Privacy 
Protection 

Epsilon (ε) 1.0-8.0 4.0 Adaptive 
based on data 
sensitivity 

Higher = 
less private 

Higher = 
more 
accurate 

Privacy 
Protection 

Delta (δ) 1e-6 to 
1e-4 

1e-5 Fixed 
conservative 
value 

Lower = 
more 
private 

Minimal 
impact 

Privacy 
Protection 

Noise 
Multiplier 

0.5-2.0 1.0 Based on 
epsilon and 
dataset size 

Higher = 
more 
private 

Higher = 
less 
accurate 

Training 
Process 

Communication 
Rounds 

50-300 200 Until 
convergence 

More 
rounds = 
more 
exposure 

More 
rounds = 
better 
accuracy 

Training 
Process 

Local Epochs 3-10 5 Device 
capability 
adaptive 

More 
epochs = 
more 
computation 

More 
epochs = 
better local 
learning 

Training 
Process 

Batch Size 16-64 32 Memory and 
data size 
adaptive 

Larger 
batches = 
less noise 
impact 

Larger 
batches = 
more stable 
training 

Optimization Learning Rate 0.001-
0.01 

0.005 Adaptive 
decay 
schedule 

No direct 
impact 

Critical for 
convergence 

Optimization Gradient 
Clipping 

0.5-2.0 1.0 Based on 
gradient 
norms 

Essential 
for DP 

Prevents 
gradient 
explosion 

 
The experimental protocol evaluates system performance 

under realistic conditions, including normal operation, 
degraded network connectivity, device failures, and 
adversarial attacks. Battery simulation models how power 
constraints affect device participation, with devices reducing 
training activity as battery depletes. Data distribution 
scenarios range from uniform to highly skewed, testing the 
system’s ability to handle different levels of heterogeneity. 
Comprehensive monitoring tracks privacy budget 
consumption, model accuracy, communication overhead, 
computational usage, and battery patterns without 
compromising privacy. Baseline comparisons include 
standard federated learning, centralized learning, and basic 
differential privacy without secure aggregation, all tested 
under the same hardware and network conditions. 

VI. PERFORMANCE MATRIX 
Evaluating the privacy-preserving federated learning 

system requires metrics that assess machine learning 
performance alongside privacy, security, and deployment 
considerations. Privacy protection is paramount, measured 
using complementary metrics to assess resistance against 
potential attacks. The differential privacy budget (epsilon) 
quantifies cumulative privacy cost, with lower values 
indicating stronger protection; values between 1.0–8.0 are 
suitable, with below 4.0 providing strong privacy. Privacy 
attack resistance is tested against threats such as membership 
inference attacks, which attempt to determine if a specific 
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patient’s data was included; the system aims to limit attack 
success to near-random guessing (~50%). 
Attribute inference attacks try to determine sensitive health 
information about patients based on partial knowledge and 
access to the trained model. For healthcare applications, it is 
crucial that attackers cannot reliably infer sensitive attributes 
such as specific medical conditions, medication usage, or 
demographic information from model outputs. The target is 
to limit attribute inference accuracy to less than 10% above 
random guessing for sensitive health attributes. Property 
inference attacks attempt to determine statistical properties 
of the training dataset, such as the prevalence of certain 
health conditions or demographic distributions. While some 
statistical information must be preserved for the model to be 
useful, the privacy protection mechanisms should prevent 
inference of detailed statistical properties that could 
compromise patient privacy.  
 

Table 5: Privacy Protection Evaluation Metrics 
 

Privacy Metric Description Measurement 
Method 

Target 
Value 

Healthcare 
Significance 

Attack Type 
Prevented 

Privacy 
Budget (ε) 

Cumulative 
privacy cost 

Differential 
privacy theory 

1.0-8.0 Lower = 
stronger 
protection 

All inference 
attacks 

Membership 
Inference 
Accuracy 

Success rate 
of 
membership 
attacks 

Adversarial 
testing 

<55% Prevents 
patient 
identification 

Membership 
inference 

Attribute 
Inference 
Accuracy 

Success rate 
of attribute 
attacks 

Targeted 
inference 
testing 

<Random 
+ 10% 

Protects 
sensitive 
health data 

Attribute 
inference 

Property 
Inference 
Accuracy 

Success rate 
of property 
attacks 

Statistical 
analysis 
attacks 

<Random 
+ 5% 

Protects 
population 
statistics 

Property 
inference 

Model 
Inversion 
Success 

Ability to 
reconstruct 
training data 

Reconstruction 
attacks 

<1% Prevents data 
reconstruction 

Model inversion 

Privacy Loss 
Rate 

Rate of 
privacy 
budget 
consumption 

Budget 
tracking over 
time 

Controlled 
decay 

Sustainable 
long-term 
operation 

Budget 
exhaustion 

 
Model accuracy and clinical utility metrics evaluate 

whether the privacy-preserving system maintains predictive 
performance for healthcare applications. Classification 
accuracy targets above 85% to ensure clinical usefulness, 
with thresholds adjusted for critical versus general 
applications. Precision and recall provide further insights, 
especially for imbalanced datasets, with high recall 
prioritized to avoid missing serious health conditions. 

 
The AUC-ROC metric evaluates the model’s ability to 

distinguish between different health conditions across 
decision thresholds, with values above 0.85 indicating good 
and above 0.90 indicating excellent performance. Clinical 
relevance metrics assess whether the model’s predictions 
align with established medical knowledge, identify known 
risk factors, respond appropriately to patient health changes, 
and provide actionable insights consistent with clinical 
guidelines. 
 

Table 6: Model Performance and Clinical Utility Metrics 
 

Performance 
Metric 

Calculation 
Method 

Target 
Value 

Clinical 
Application 

Importance 
Level 

Measurement 
Frequency 

Overall 
Accuracy 

Correct 
predictions / 
Total predictions 

>85% General 
health 
monitoring 

High Every 
communication 
round 

Precision 
(Positive 
Predictive 
Value) 

True positives / 
(True positives + 
False 

>80% Disease 
detection 

Very High Per health 
condition 

Recall 
(Sensitivity) 

True positives / 
(True positives + 
False negatives) 

>90% Critical 
condition 
screening 

Critical Per health 
condition 

Specificity True negatives / 
(True negatives + 
False positives) 

>85% Avoiding 
false alarms 

High Per health 
condition 

F1-Score 2 × (Precision × 
Recall) / 
(Precision + 
Recall) 

>85% Balanced 
performance 

High Per health 
condition 

AUC-ROC Area under ROC 
curve 

>0.85 Risk 
stratification 

Very High Per prediction 
task 

Calibration 
Error 

Reliability of 
probability 
predictions 

<10% Treatment 
decision 
support 

High Across 
probability 
ranges 

 
System efficiency and deployment metrics evaluate 

performance under real-world constraints, including limited 
computational resources, battery life, network bandwidth, 
and intermittent connectivity. Communication efficiency 
measures data transmission volume and frequency, aiming to 
minimize overhead while preserving model performance and 
privacy. Computational efficiency assesses local training 
time, memory usage, and the impact of privacy mechanisms, 
ensuring practicality for deployment on actual smartwatches 
and fitness trackers. 

Battery consumption analysis evaluates the impact of 
federated learning on device battery life, critical for user 
acceptance. Scalability metrics assess performance as device 
numbers increase, including communication, coordination, 
and model quality. Robustness metrics measure system 
reliability under dropouts, network outages, and malicious 
participants [Table 7]. 

 
Table 7: System Efficiency and Deployment Metrics 

 
Efficiency 
Category 

Specific 
Metrics 

Target 
Values 

Measurement 
Units 

Impact on 
Deployment 

Optimizatio
n Priority 

Communicatio
n Efficiency 

Data per round <1MB per 
device 

Bytes 
transmitted 

Network 
costs 

High 

Communicatio
n Efficiency 

Communicatio
n frequency 

<10 rounds 
per day 

Rounds per 
time period 

Battery 
usage 

High 

Computational 
Efficiency 

Training time 
per epoch 

Training 
time per 
epoch 

Time per local 
update 

User 
experience 

Medium 

Computational 
Efficiency 

Memory usage <2GB peak RAM 
consumption 

Device 
compatibilit
y 

High 

Battery Impact Additional 
power 
consumption 

<5% daily 
battery 

Percentage 
battery drain 

User 
acceptance 

Very High 

Scalability Performance 
with device 
count 

Linear 
degradatio
n 

Performance 
vs. participants 

Network 
deployment 

Medium 

Robustness Performance 
with dropouts 

<10% 
accuracy 
loss 

Accuracy 
reduction 

System 
reliability 

High 

Convergence 
Speed 

Rounds to 
target accuracy 

<150 
rounds 

Communicatio
n rounds 

Time to 
deployment 

Medium 
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The evaluation framework also considers long-term 
sustainability, assessing privacy budget maintenance over 
extended operation, detecting model drift, and measuring 
adaptation to new health data or device capabilities. Quality 
assurance metrics ensure continuous high standards by 
monitoring corrupted data, malfunctioning devices, security 
breaches, and regulatory compliance. Continuous logging 
and analysis track performance trends, enabling early 
detection of potential issues and supporting the long-term 
viability of privacy-preserving federated learning for 
healthcare applications. 

VII. RESULTS AND DISCUSSION 
The privacy-preserving federated learning system was 

evaluated across multiple scenarios, demonstrating effective 
collaborative learning while maintaining patient privacy. 
Differential privacy-maintained epsilon values between 1.2 
and 6.8, with strong protection below 4.0. Membership 
inference attacks were limited to near-random success (51.2–
53.8%), attribute inference attacks achieved only 8.3–12.1% 
above random guessing, and property inference attacks 
remained below 7%, showing robust protection of individual 
and population-level health data (Fig. 5a–5b). 
 

Table 8: Privacy Protection Metrics 
 

Privacy Metric Range/Value Performance Indicator 
Differential Privacy (ε) 1.2 - 6.8 Strong protection (ε < 4.0 for 

healthcare) 
Membership Inference Attack 
Success 

51.2% - 53.8% Near-random performance (robust 
protection) 

Attribute Inference Attack 
Accuracy 

8.3% - 12.1% Above random guessing (strong 
resistance) 

Property Inference Attack 
Accuracy 

< 7% Above random baseline (effective 
protection) 

 
Model accuracy results exceeded clinical utility thresholds 

across all healthcare tasks. The federated learning system 
achieved 87.3–92.1% accuracy for cardiac arrhythmia 
detection, 89.7% for heart rate variability analysis, and 
85.4% for sleep pattern classification, showing that privacy 
mechanisms minimally impact clinical utility. Precision 
ranged from 82.1% to 91.3%, recall from 85.7% to 93.2%, 
and AUC-ROC consistently exceeded 0.87, reaching 0.91–
0.94 for cardiac monitoring tasks (Fig. 5c–5d). 
 

Table 9: Model Accuracy and Performance Metrics 
 

Healthcare 
Application 

Federated 
Learning 
Accuracy 

Centralized 
Learning 
Accuracy 

Precision 
Range 

Recall 
Range 

AUC-
ROC 

Cardiac 
Arrhythmia 
Detection 

87.3% - 
92.1% 

94.2% 82.1% - 
91.3% 

85.7% 
- 
93.2% 

0.91 - 
0.94 

Heart Rate 
Variability 
Analysis 

89.7% - 82.1% - 
91.3% 

85.7% 
- 
93.2% 

> 0.87 

Sleep Pattern 
Classification 

85.4% - 82.1% - 
91.3% 

85.7% 
- 
93.2% 

> 0.87 

 
 

Communication efficiency analysis showed that network 
overhead was minimized, with average data per device per 
round at 0.8 MB, below the 1 MB target. The system 
converged in 165 rounds, fewer than the 180–200 rounds of 
baseline methods. Computational efficiency on simulated 
wearables was practical, with local training completing in 
18–28 seconds and memory usage peaking at 1.6 GB. 
Battery consumption increased by only 3.2% per day, within 
acceptable limits for continuous operation. 
 

Table 10: System Efficiency Metrics 
 

Efficiency Metric Measured 
Value 

Target/Baseline Performance Value 

Communication per Device 
per Round 

0.8 MB < 1 MB target ✓ Target Met 

Communication Rounds to 
Convergence 

165 rounds 180-200 baseline ✓ Improved 

Local Training Time 18-28 seconds - Acceptable 
Memory Usage Peak 1.6 GB - Practical for 

deployment 
Additional Battery Drain 3.2% Acceptable 

limits 
✓ Within Limits 

 
Scalability testing with up to 5,000 simulated devices 

showed linear performance degradation, with accuracy 
dropping less than 2% as participants increased from 100 to 
5,000. The system remained stable even with 30% device 
dropouts, demonstrating robust operation under realistic 
conditions. Data heterogeneity tests indicated effective 
handling of varying distributions, with accuracy decreasing 
only 1.8% under mild heterogeneity and within 6.2% under 
severe heterogeneity. Automated quality control detected 
94.7% of corrupted data and 97.3% of device malfunctions, 
while attack detection identified 89.2% of simulated 
malicious participants. Long-term sustainability analysis 
over 12 months showed that privacy budgets could be 
maintained via adaptive management, ensuring continued 
protection while extending operational lifetime. 
 

Table 11: Scalability and Robustness Results 
 

Test Scenario Confirmation Performance 
Impact 

Success Rate 

Device Scalability 100 → 5,000 devices < 2% accuracy 
drop 

Linear 
degradation 

Device Dropout 
Resilience 

30% dropout rate Stable performance 
maintained 

✓ Robust 

 Data Heterogeneity 
(Severe) 

Minimal overlap 6.2% accuracy 
drop 

Within 
acceptable range 

Data Corruption 
Detection 

Automated QC - 94.7% detection 

Device Malfunction 
Detection 

Automated QC - 97.3% detection 

Malicious Participant 
Detection 

Attack simulation - 89.2% detection 

Long-term Sustainability 12-month simulation Privacy budget 
maintained 

✓ Adaptive 
management 
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Fig. 5. Evaluation results of the proposed privacy-preserving 
federated learning system across multiple healthcare application 
scenarios. (a) Differential privacy epsilon values across 
experiments, indicating effective privacy budgeting. (b) Resistance 
to membership, attribute, and property inference attacks, all near or 
below random guessing baselines. (c) Accuracy of healthcare 
models such as arrhythmia detection, HRV analysis, and sleep 
classification. (d) Precision, recall, and AUC-ROC metrics across 
classification tasks. € Communication and computational 
efficiency, showing feasibility for wearable devices. (f) Scalability 
and robustness under increased device count and dropout scenarios. 

 
Prior research has validated these results with respect to 

instances of privacy-preserving federated learning in healthcare. 
Pati et al. demonstrated differential privacy to protect sensitive 
health data while preserving model utility [33], and Chen et al. 
reported near-random success of membership inference attacks on 
federated learning models, which substantiate that secure 
aggregation and privacy mechanisms are effective in preserving 
patient information [34]. 

VIII. FUTURE WORK  
Future research should focus on optimizing privacy-

preserving federated learning for wearable healthcare 
devices, ensuring efficiency, robustness, and long-term 
sustainability. Key directions include validating systems 
with real patients and institutions, supporting rare disease 
and longitudinal studies, enhancing security against attacks, 
developing cross-institutional protocols, integrating edge 
computing, and enabling continuous model adaptation. 
Standardized evaluation frameworks and datasets will 
facilitate fair comparisons and practical adoption. 

IX. CONCLUSION 
This study shows that privacy-preserving federated 

learning enables collaborative healthcare AI while protecting 
patient data. The system maintains high accuracy, handles 
heterogeneous wearable device data, and is robust to 
connectivity issues and malicious activity. Low 
communication and battery overhead make it practical for 
real-world deployment, and adaptive privacy management 
ensures long-term sustainability. This study demonstrates 
that privacy-preserving federated learning is a practical 
approach for enabling collaborative healthcare AI without 
compromising patient privacy. By combining differential 
privacy guarantees with wearable-device optimizations, the 
system supports scalable, real-world deployment. The 
findings highlight the potential of distributed health data to 
advance medical research, improve diagnostics, and enable 
personalized treatments, while future work should focus on 
multi-modal integration, rare disease applications, and cross-
institutional collaboration under standardized protocols. 
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