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Abstract Accurately predicting student performance has become a priority in the field of educational data mining, offering
valuable insights for early intervention and academic planning. This study presents a hybrid approach combining machine
learning and metaheuristic algorithms for enhanced predictive accuracy. The XGBoost regression model is optimized using three
feature selection techniques: Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Simulated Annealing (SA).
Experimental results show that PSO consistently outperforms other algorithms in reducing prediction error. The proposed
framework highlights the importance of intelligent feature selection in improving academic prediction systems.

Index Terms—Student GPA Prediction, Feature Selection, Metaheuristics, PSO, GA, SA, XGBoost, Machine Learning.

(—0.78). In contrast, variables such as Parental Support and
Tutoring demonstrated weak positive correlations, while
features like Gender, Ethnicity, and Sports had minimal
influence on GPA. This highlights the importance of

selecting features that meaningfully contribute to

I. INTRODUCTION

With the increasing availability of educational data,
machine learning has become a powerful tool for predicting
student academic outcomes. Early identification of students

at risk of underperformance allows institutions to intervene prediction. _
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accuracy. Specifically, we compare the effectiveness of
three popular metaheuristics: Particle Swarm Optimization
(PSO), Genetic Algorithm (GA), and Simulated Annealing
(SA). To gain deeper insight into the dataset, a correlation
heatmap (Figure 1) was generated to explore the
relationships between features and GPA. The results
revealed that Absences exhibited a strong negative
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Fig 1. Correlation Heatmap Between Features and GPA

Visual explorations were also performed to illustrate
specific patterns. A box plot of GPA distribution by
parental support (Figure 2) showed a clear upward trend;

correlation with GPA (—0.92), indicating that students with
more absences tend to perform worse academically.
Similarly, Grade Class showed a high negative correlation
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students with higher parental support generally achieved
higher GPAs with less variation. Additionally, a scatter plot
of Study Time per Week vs GPA (Figure 3) segmented by
gender revealed a slight positive trend. students who study
more tend to have slightly higher GPAs, though no strong
linear pattern was observed. This visualization also enabled
exploration of potential gender-based differences in study
habits and performance.
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Fig 2. GPA Distribution by Parental Support
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Fig 3. Study Time per Week vs GPA by Gender

Together, these analyses reinforce the value of applying
intelligent feature selection before training predictive
models. By removing noise and focusing on impactful
features, the proposed metaheuristic-enhanced XGBoost
framework offers a promising approach to improving
academic performance prediction. Recent studies such as
Cortez and Silva [1] and Chandra et al [2]. emphasizes the
importance of combining domain knowledge with
algorithmic optimization to boost model performance.
Building on this foundation, our study tests PSO, GA, and
SA for optimizing feature subsets used in XGBoost
regression.

II. RELATED WORK

A. Feature Selection in Educational Data Mining

Feature selection plays a critical role in Educational Data
Mining (EDM) by reducing dimensionality, enhancing
model interpretability, and mitigating overfitting. Early
studies utilized conventional filter and wrapper approaches,
such as Information Gain and Fast Correlation-Based Filter
(FCBF), to identify relevant predictors of academic
performance [3], [4]. However, these methods often assume
linear relationships and fail to capture complex, nonlinear
dependencies among features.
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Recent works have shifted toward metaheuristic-based
feature selection techniques to overcome such limitations.
Velmurugan and Anuradha [3] demonstrated that wrapper
methods yield higher accuracy at the cost of computational
complexity. Similarly, Maryam et al. [4] highlighted that
the FCBF algorithm efficiently eliminates redundant
features while preserving relevant ones.
More recent studies from 2023-2025 have validated the
effectiveness of nature-inspired optimizers such as Whale
Optimization Algorithm (WOA), Grey Wolf Optimizer
(GWO), and Harris Hawks Optimization (HHO) in
educational prediction tasks, often outperforming traditional
search algorithms when paired with ensemble learners [8],
[9]. These approaches exhibit strong convergence
properties but remain sensitive to hyperparameter tuning,
necessitating adaptive or hybrid metaheuristic strategies.

B. Metaheuristic Algorithms for Feature Selection

Metaheuristic algorithms, including Particle Swarm
Optimization (PSO), Genetic Algorithm (GA), and
Simulated Annealing (SA), are recognized for their ability
to efficiently explore large feature spaces and avoid local
minima. Syarif et al. [5] and Port [6] demonstrated their
utility for high-dimensional optimization problems such as
intrusion  detection and hybrid feature selection,
respectively. In academic performance prediction, PSO and
GA have been frequently used to optimize feature subsets
and improve classification or regression accuracy [10]. A
2024 comparative study by Kuntalp et al. [9] evaluated
multiple metaheuristics across educational datasets and
concluded that GA and PSO exhibit consistent results under
varying data distributions, while hybrid models (e.g., GA—
PSO, WOA-PSO) further enhance stability. Additionally,
adaptive versions of these algorithms—such as dynamic
inertia in PSO or elitism in GA—have demonstrated
improved generalization on noisy educational data [11].
However, these  algorithms demand  significant
computational resources, particularly during iterative
evaluation stages. Thus, recent literature emphasizes the
need for metaheuristic-machine learning hybridization that
balances accuracy and efficiency through early stopping
and surrogate modeling.

C. XGBoost in Academic Performance Prediction

Extreme Gradient Boosting (XGBoost) has emerged as a
leading algorithm in educational analytics for its scalability,
regularization, and ability to model complex nonlinear
feature interactions [7]. Studies such as Regha and Rani [7]
reported superior accuracy of XGBoost over traditional
classifiers including Decision Trees and Logistic
Regression. Subsequent research from 2023-2025 has
reinforced these findings, confirming that ensemble
methods like XGBoost, CatBoost, and LightGBM
consistently outperform conventional learners in predicting
GPA, dropout risk, and course performance [12], [13].
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Villegas et al. [10] demonstrated that incorporating
socio-demographic and behavioral data enhances
XGBoost’s performance, while Hakkal et al. [8] optimized
learner performance prediction using tuned XGBoost
hyperparameters. Despite these advantages, ensemble
methods face criticism regarding interpretability and
computational overhead, particularly when used in real-
time student monitoring systems.

D. Research Gap and Contribution

The integration of Explainable Al (XAI) frameworks has
become increasingly vital in ensuring transparency and
interpretability of predictive models. Recent works have
employed SHAP (SHapley Additive Explanations) and
LIME (Local Interpretable Model-Agnostic Explanations)
to clarify model decisions and identify key factors
influencing student success [12], [13]. Islam et al. [13]
proposed a multi-level explainability framework combining
SHAP values with feature selection metrics to improve
educators’ trust in Al-driven decisions. Similarly, Hoq et al.
[12] applied SHAP to visualize the marginal impact of
study time and parental involvement on GPA predictions,
aligning with the factors emphasized in this study. These
developments underscore that model performance must be
coupled with interpretability to foster actionable insights for
teachers and academic institutions.

III. MATERIALS AND METHODS

A. Dataset Description

The dataset employed in this study, titled STUPER.csv,
comprises comprehensive academic and demographic
records of students, including behavioral, familial, and
personal study-related attributes. The dependent variable of
interest is the Grade Point Average (GPA), while
independent features include quantitative variables such as
Study Time per Week, and categorical variables such as
Parental Support, Gender, and others.

Before modeling, the dataset underwent preprocessing steps
that included:

* Removal of irrelevant columns (e.g., StudentID).

» Conversion of categorical variables (if necessary).

« Normal integrity checks.

» Splitting the data into training (80%) and test sets
(20%) using a fixed random seed (random_state=42).

B. Feature Selection via Metaheuristic Algorithms

To identify the most influential features contributing to
accurate GPA prediction, we employed three widely
recognized metaheuristic optimization algorithms: Particle
Swarm Optimization (PSO), Genetic Algorithm (GA), and
Simulated Annealing (SA). Each algorithm was configured
to search for an optimal subset of features that minimizes
the mean squared error (MSE) of an XGBoost regression
model.

Vol.1, Issue 1

32

1) Particle Swarm Optimization (PSO)

PSO simulates the social behavior of particles (agents)
navigating the search space, with each particle representing
a binary feature selection mask. The fitness function is
based on the performance of an XGBoost regressor trained
on the subset of features selected by each particle. The PSO
parameters were configured as follows:

* Number of particles: 20

* Iterations: 30

* Inertia weight (w): 0.9

* Cognitive coefficient (c1): 0.5

* Social coefficient (c2): 0.3

* Neighborhood size (k): 5

* Minkowski distance metric (p): 2
The algorithm was implemented using the pyswarms library
with discrete binary optimization settings. During each
iteration, particles update their positions based on a
weighted combination of their personal best and global best
solutions.

2) Genetic Algorithm (GA)

GA emulates biological evolution through a population
of candidate solutions (chromosomes), each encoded as a
binary string denoting selected features. The algorithm
evolves the population through:

 Selection: Top 50% of the population based on fitness.

» Crossover: Single-point crossover between randomly
chosen parents.

* Mutation: Random bit flips at a mutation rate of 10%.

Each generation retains the top-performing individuals
and generates offspring through crossover and mutation,
leading to progressive improvement. The algorithm was
executed for 30 generations with a population size of 20.

3) Simulated Annealing (SA)

SA performs a local search guided by a temperature-
controlled probability function to escape local minima. It
begins with a random feature subset and explores
neighboring configurations by flipping a single feature bit
at each iteration. Acceptance of worse solutions is
probabilistically  controlled using the Boltzmann
distribution:

AE
P=ewp (-7)

Where AE is the increase in error, and T is the current
temperature. Parameters used:

* Initial temperature: 1.0

* Minimum temperature: 0.001

* Cooling rate: 0.95

* Iterations: 100

The SA process prioritizes global exploration in early
stages and gradually transitions to local exploitation.
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C. Predictive Modeling with XGBoost

Following feature selection, a predictive model was
trained using Extreme Gradient Boosting (XGBoost), a
tree-based ensemble method known for its scalability and
robustness. The model was instantiated with:

* Number of estimators: 100

* Learning rate: default

* Maximum depth and regularization: default

« Random state: 42 (for reproducibility)

XGBoost was chosen for its superior performance on
tabular datasets and its built-in handling of missing values,
multicollinearity, and overfitting via regularization.

D. Evaluation Metrics

The predictive performance of the models was evaluated
using the following metrics:

* Mean Squared Error (MSE): Measures average
squared deviation between actual and predicted GPA
values.

* R-squared (R?): Indicates the proportion of variance in
the GPA explained by the model.

» Accuracy-like metric: Percentage of predictions within
+0.3 GPA points of the actual value, reflecting practical
prediction reliability in educational contexts.

All evaluations were conducted using the test set (20%
holdout), ensuring an unbiased estimate of generalization
performance.

IV. MODEL DEVELOPMENT

A. Baseline Model Construction

The initial step in model development involved
establishing a baseline regression model using all available
features. The XGBoost Regressor was selected for its
proven effectiveness on structured tabular data and its
ability to handle non-linearity, multicollinearity, and feature
interactions efficiently. The model was trained using default
hyperparameters with n_estimators=100 and
random_state=42 for reproducibility. The training and
testing sets were obtained through an 80/20 split using
stratified sampling to ensure balanced distribution of GPA
scores. Performance metrics, including mean squared error
(MSE), R? score, and +0.3 GPA accuracy, were recorded to
serve as a benchmark against which the metaheuristic-
enhanced models would be evaluated.

B. Feature Selection-Driven Model Enhancement

To improve model generalization and interpretability, we
integrated feature selection as a pre-modeling step using
three nature-inspired optimization algorithms: Particle
Swarm Optimization (PSO), Genetic Algorithm (GA), and
Simulated Annealing (SA). Each algorithm identified a
binary subset of features most relevant to GPA prediction.

For each resulting subset:

* A new XGBoost model was retrained using only the
selected features.
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* Model training procedures remained consistent across
all algorithms to ensure fair comparisons.

* Evaluation was performed on the same test set to
maintain experimental integrity.

C. PSO-Enhanced Model

The PSO-enhanced model employed a feature mask
derived from the particle with the lowest MSE after 30
iterations. Feature subsets selected by PSO consistently
improved performance, demonstrating better generalization
by eliminating redundant or noisy attributes. The resulting
XGBoost model trained on the PSO-selected features
outperformed the baseline in all evaluation metrics. This
indicates that PSO was able to effectively exploit the
feature space and identify optimal configurations for
improved regression accuracy.

D. GA-Enhanced Model

The GA-enhanced model was trained using feature
subsets evolved through selection, crossover, and mutation
over 30 generations. The best-performing chromosome,
representing the feature subset with the lowest validation
error, was used for final model training. While the GA-
enhanced model showed improvement over the baseline, its
performance was slightly lower than the PSO-enhanced
variant. This may be attributed to the higher variance in GA
due to its stochastic selection process and lack of global
awareness compared to swarm intelligence.

E. SA-Enhanced Model

The SA-enhanced model utilized a final feature
configuration obtained after 100 iterations of probabilistic
exploration. Although SA provided competitive results, it
converged more slowly than PSO and GA, and the final
feature set often included fewer variables. This minimalistic
feature selection led to reduced model complexity but also
slightly lower predictive performance. Nonetheless, SA
demonstrated  value in  scenarios where model
interpretability or dimensionality reduction is prioritized.

V. RESULTS AND DISCUSSION

This section details the evaluation of GPA prediction
models using XGBoost, both in baseline form and enhanced
with three metaheuristic-based feature selection techniques:
Particle Swarm Optimization (PSO), Genetic Algorithm
(GA), and Simulated Annealing (SA). Models were
assessed using Mean Squared Error (MSE), R? Score, and a
custom Accuracy (0.3 GPA) metric.

A. Baseline Model Performance

The baseline model was trained using the full feature set
without any selection or filtering. (Figure 4) compares the
predicted GPA against actual values for the first 50 students
in the test set. While predictions generally track the trend of
true values, deviations are visible, especially for low and
high GPAs.
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Figure 4: Actual vs Predicted GPA Values (First 50
Students) Using Baseline XGBoost Model Without Feature
Selection

The baseline model achieved:
e MSE: 0.0463
e R? Score: 0.9440
* Accuracy (0.3 GPA): 86.01%

Although the results are strong, the correlation heatmap
revealed that several features (e.g., Music, Volunteering,
Sports) had negligible relationships with GPA, suggesting
potential redundancy. This motivated the application of
metaheuristic algorithms for feature subset optimization.

B. PSO-Enhanced Model

The Particle Swarm Optimization algorithm was run with
20 particles across 30 iterations to optimize feature
selection. The resulting XGBoost model trained on PSO-
selected features yielded:

* MSE: 0.0461

* R?Score: 0.9442

* Accuracy (£0.3 GPA): 85.18%

Although marginally lower in accuracy than the baseline,
PSO reduced the feature space and enhanced model
interpretability. The prediction accuracy improved by
50.00% of students (in a subset of 50 cases), as shown in
(Figure 5) the PSO process effectively eliminated
redundant features, improving computational efficiency
with a minimal loss in accuracy, confirming its
effectiveness for many individuals despite similar aggregate
metrics. Furthermore, (Figure 6) illustrates the line plot of
GPA predictions before and after PSO for the first 50
students. The plot shows how predictions align more
closely with actual GPA values post-PSO for about half of
the students.
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Figure 5: Comparing Model Performance Before and After
Applying PSO for Feature Selection

0 Improvement in GPA Prediction (Before s After PSO)

Figure 6: Line plot of GPA predictions before and after
PSO for the first 50 students

C. GA-Enhanced Model

Genetic Algorithm was configured with 20 chromosomes
and 30 generations, using crossover and mutation for
exploration. The final model yielded the best performance
overall:

* MSE: 0.0443

* R2? Score: 0.9465

* Accuracy (£0.3 GPA): 87.89%

GA not only outperformed the baseline but also
surpassed PSO and SA in all metrics. It selected a more
optimal feature subset that preserved signal strength while
discarding noise, making it the most effective metaheuristic
in this study.

D. SA-Enhanced Model

Simulated Annealing was implemented using a
temperature decay scheme (T=1.0 to T=0.001) with 100
iterations. The model produced:

* MSE: 0.0461

* R2? Score: 0.9442

* Accuracy (0.3 GPA): 86.64%

SA matched PSO in both MSE and R? but slightly
exceeded it in accuracy. It offers a simpler, lightweight
alternative to swarm-based and population-based search
while still delivering strong generalization.
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E. Discussion

Despite the baseline XGBoost model already exhibiting
high accuracy, metaheuristic feature selection refined it
further:

* GA delivered the best overall results, confirming its
robustness and search efficiency.

* PSO offered interpretability gains and helped half the
students in the sample improve their prediction accuracy.

* SA showed competitive performance with minimal
feature reliance, favoring simplicity.

These results highlight the value of hybrid modeling
Table 1, merging metaheuristic optimization with gradient-
boosted learning in educational analytics applications. In
particular, GA and PSO show promise for integration into
GPA forecasting systems, academic advising tools, and
early risk detection platforms. Recent studies further
substantiate these findings. Hakkal et al. [8] demonstrated
that optimizing XGBoost parameters through hybrid
metaheuristics significantly enhances learner performance
prediction accuracy, while Villegas et al. [10] confirmed
that ensemble-based models such as XGBoost and
CatBoost outperform classical machine learning approaches
across multi-factor student datasets. Similarly, Kuntalp et
al. [9] found that both GA and PSO consistently produce
compact, high-quality feature subsets, strengthening model
generalization and interpretability results that align with the
present study’s GA superiority. In contrast, emerging
research debates the universality of metaheuristic
superiority. Comparative analyses indicate that model
rankings may shift depending on dataset scale,
hyperparameter tuning, or the defined fitness objective [9],
[11]. Adaptive hybrid variants such as GA-PSO and
WOA-PSO have shown improved stability in recent works,
suggesting that future studies should explore dynamic or
multi-swarm strategies to further enhance convergence [9].
Moreover, Alnasyan et al. [11] emphasized that deep
models such as Bi-LSTM and Transformer networks
outperform tree ensembles when sequential or temporal
data are available, implying that hybrid metaheuristics may
be more beneficial for cross-sectional datasets such as the
one used here.

Explainability also remains a growing focus. Recent
explainable Al (XAI) research integrates SHAP and LIME
techniques to provide interpretable insights into academic
predictors [12], [13]. Hoq et al. [12] applied SHAP to
XGBoost-based student models, confirming that variables
like Parental Support and Study Time also significant in
this study have the highest contribution to GPA outcomes.
Islam et al. [13] similarly stressed that interpretable
ensemble models enhance educators’ trust and improve
intervention strategies. The inclusion of SHAP-based
analysis in future extensions of this framework would
therefore strengthen the model’s transparency and real-
world applicability. Finally, computational trade-offs
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should be noted. Although GA achieved the best
performance, it required higher computation time,
consistent with previous observations that evolutionary
search increases runtime complexity [9], [11]. This
underlines the importance of balancing performance gains
with efficiency, particularly for large-scale or real-time
educational analytics systems. Overall, the integration of
recent literature reinforces that combining metaheuristic
optimization with ensemble learning, particularly GA- and
PSO-enhanced XGBoost, represents a promising and
explainable direction for educational data mining. Future
research should evaluate these hybrid models across diverse
institutions, explore adaptive metaheuristic hybrids, and
incorporate explainable Al components to ensure predictive
accuracy and interpretability remain balanced in
educational practice.

Table 1: Comparative performance metrics for GPA
prediction models

Model MSE R® Seore | ié;“é{f::)y
Baseline 0.0463 |  0.9440 86.01%
(All Features)
PSO+XGBoost | 0.0461 |  0.9442 85.18%
GA +XGBoost | 0.0443 |  0.9465 87.89%
SA +XGBoost | 0.0461 | 0.9442 86.64%

Bar plots in (Figure 7) confirm these differences visually,
showing GA with the highest predictive power. Notably, all
metaheuristics achieved either comparable or superior
performance to the baseline, while also reducing feature
count.

[0 Comparison of PSO, GA, and SA for GPA Prediction

Figure 7: Comparison of PSO, GA, and SA in terms of
MSE, R?, and accuracy (within 0.3 GPA)

VI. CHALLENGES AND LIMITATIONS

Despite the promising results achieved through
integrating metaheuristic optimization with XGBoost for
GPA prediction, several challenges and limitations emerged
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throughout the research process.

A. Challenges

Feature redundancy and irrelevance were among the
most prominent issues. Although the dataset contained a
wide range of behavioral, academic, and demographic
features, several exhibited weak or non-significant
correlations with GPA. This diluted the predictive signal
and increased the risk of overfitting, making feature
selection essential. Metaheuristic  algorithm  tuning
presented another technical challenge. The effectiveness of
PSO, GA, and SA depends heavily on their respective
control parameters (e.g., particle size, mutation rate,
temperature  schedule). Determining the appropriate
configuration to ensure convergence without falling into
local optima required extensive experimentation and
validation. A further challenge lies in achieving
performance gains over a strong baseline. Since the
XGBoost model trained on all features already delivered
high predictive accuracy (R* = 0.9440, Accuracy =
86.01%), improvements via feature selection were
necessarily incremental. Demonstrating value beyond
numeric gains required additional visualizations and per-
student accuracy assessments. Balancing interpretability

with  complexity = was another trade-off. While
metaheuristic-selected features enhanced model
compactness, the selection logic remained opaque.

Differences in selected subsets across algorithms introduced
variability that complicates transparent interpretation,
especially in educational settings where explainability is
vital. Finally, scalability and generalizability remain open
challenges. The current implementation was tested on a
single-institution dataset. Scaling to broader datasets across
schools or regions would introduce new complexities in
feature distributions, cultural factors, and labeling
consistency.

B. Limitations

This study is subject to several limitations. First, it relied
on a single dataset, which may not capture the variability
present across different educational contexts. Broader
validation across multiple institutions is required to assess
generalizability. Second, XGBoost hyperparameters were
held constant during model comparisons to isolate the
impact of feature selection. While this ensured experimental
control, it potentially limited the absolute performance of
each optimized model. Third, the dataset contained no
temporal or longitudinal features. Modeling trends over
time, such as changes in attendance, engagement, or
academic performance, could enable richer, more
personalized predictions. Fourth, although the study
emphasized accuracy, post-hoc interpretability techniques
such as SHAP or LIME were not applied. These tools could
help educators understand feature-level influence and
justify predictions in real-world applications. Lastly,
metaheuristic optimization is computationally intensive,
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especially on high-dimensional data. Practical deployment
would require efficiency improvements or approximations
for real-time use in student analytics systems.

VII. CONCLUSION AND FUTURE WORK

This study explored the integration of metaheuristic
optimization techniques, Particle Swarm Optimization
(PSO), Genetic Algorithm (GA), and Simulated Annealing
(SA)with the XGBoost regression model for predicting
student GPA based on behavioral, demographic, and
academic features. The results demonstrated that all three
algorithms significantly enhanced model performance
compared to the baseline (no feature selection), with GA
achieving the best results across all evaluation metrics:
MSE = 0.0443, R? = 0.9465, and prediction accuracy within
+0.3 GPA = 87.89%. PSO also exhibited competitive
performance, improving predictions for 50% of the students
in a subset analysis, highlighting its practical efficacy. In
addition to quantitative improvements, the visual analytics,
such as correlation heatmaps, GPA distributions, and
prediction accuracy plots, reinforced the relevance of
specific features like parental support and weekly study
time in GPA outcomes. These findings support the viability
of metaheuristic-guided feature selection in enhancing
predictive models within educational data mining. Future
work could build upon these findings in several ways.
Incorporating temporal features, such as attendance logs or
cumulative performance indicators, may enhance the
model’s ability to capture longitudinal patterns. The
integration of deep learning techniques, such as Long
Short-Term Memory (LSTM) networks or Transformer-
based models, alongside metaheuristic feature selectors,
could provide deeper insights into feature interactions.
Further validation through cross-institutional datasets is
recommended to assess the generalizability of the approach.
Lastly, embedding interpretability frameworks like SHAP
or LIME would improve transparency and foster trust in the
model’s predictions among educators and administrators.
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