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Information about JSUCIT

Description

JSUCIT is a peer-reviewed scientific journal issued by the College of Computer and
Information Technology at Shaqra University, dedicated to publishing research and
scholarly studies in the fields of computing and information technology. The journal
aims to serve as a leading platform for knowledge dissemination and to contribute
to enriching scientific research in areas such as computing, artificial intelligence,
data science, networks, cybersecurity, and information systems. It also seeks to
enhance the position of Shaqra University as one of the leading institutions in
scientific research.

Aims & Scope (Broad)

JSUCIT welcomes high-quality work across the full spectrum of computing fields.
We publish original research articles, reviews, short communications, and
application-focused studies that are methodologically sound, clearly written, and
impactful. The journal publishes original papers in the areas of, but not limited to:

o Intelligent & Data-Driven Computing: Al and computational intelligence
(e.g., machine/deep learning, NLP, fuzzy methods, data mining); data and
information domains (e.g., big data, bioinformatics, database and 7
information systems).

« Visual, Signal & Media Computing: computer vision, image/video
processing, pattern recognition, speech/audio processing, and computer
graphics.

o Networks & Scalable Computmg networks and protocols
cloud/edge/fog; high-performance computing; Internet of Things;
mobile/wireless systems (including sensor networks); social and
socio-technical networks. :

« Security, Privacy & Trust: cybersecurity, 1nformat10n and network
security, cryptography/data protection, blockchain and distributed ledgers,
and related assurance/forensics.

« Computer Engineering & Emerging Platforms: embedded and real-time
systems, robotics and autonomous systems, quantum computing.

« Software & Systems Engineering: software architecture and design,
verification and validation, rehability/safety, testing and quality assurance,
and lifecycle practices.
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Vision
To make the Journal of Shaqra University for Computing and Information

Technology a leading scientific platform at the local, regional, and international
levels.

Mission

To provide a supportive and encouraging academic environment for publishing
outstanding research and studies in computing and information technology, and to
contribute to the development of technical knowledge while enhancing collaboration
among academic researchers from various institutions.

Goals

1- Support Scientific Research: Provide a peer-reviewed platform for
publishing research and studies in computing and information technology.

2- Enhance Academic Excellence: Encourage innovation and creativity in
scientific research and its applications.

3- Promote Scientific Communication: Strengthen collaboration” among
researchers, academics, and practitioners in the field of technology. '

4- Expand Knowledge Sharing: Provide opportunities for local and
international researchers to publish their work‘and exchange knowledge. -
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JSUCIT Publication Guidelines

1) Manuscript Types

o Research Article - full original work with clear motivation, sound methods,
validated results, and defensible conclusions.

o Review Article - critical, well-scoped synthesis of a focused topic with
comprehensive, current references.

o Case Study / Application - practice-oriented study demonstrating solutions,
deployments, or lessons learned.

« Book Review - reviews of recent books relevant to computing (by invitation
or prior approval).

o Extended Conference Paper - substantially revised/extended versions of
peer-reviewed conference papers (declare provenance and permissions).

2) Submission & Originality

Submissions must be original, in English, and not under review elsewhere. Disclose
earlier versions (e.g., theses, preprints, prior-language publications) and confirm
permissions for copyrighted material. If extended from a conference paper; state the
event, explain the significant additions, and confirm copyright status/permission.

3) Peer Review

JSUCIT operates triple-blind peer review. Editors may desk-screen for fit; quality,
and novelty before external review:Decisions include accept, minor reyision, major
revision, or reject. Revised manuscripts.are reassessed as needed.

4) Revision,&’Proofs_

Typical deadlines: 60 days for the first revision and 20 days for subsequent rounds.
Page proofs are.provided for correcting typesetting errors and must be returned
promptly (target 14 days).”
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5) Manuscript Preparation (IEEE)

o Templates: Use the official IEEE Word/LaTeX templates (Overleaf
supported).

o Structure: Title, Authors, Abstract (< 250 words), Keywords (7-10),
Introduction, Methods, Results, Discussion, Conclusion, Acknowledgments,
References.

o Length: Full papers <10 IEEE-formatted pages, inclusive of all content.

o Figures/Tables/Equations: Number consistently; ensure legibility and
correct placement/citation.

« Citations: Numeric in-text citations [1]; reference list in citation order per
IEEE style.

6) Ethics, Transparency, and Compliance
JSUCIT adheres to COPE and CSE best practices. Declare conflicts of interest,

funding, necessary approvals, and permissions. Data/code availability is encouraged
to support reproducibility.

7) Title Page

Include: Title; author names & affiliations (with country); one cotreésponding author
with email; present address notes if applicable. :

8) Submission
Submit manuscripts via the JSUCIT online submission system and include a cover

letter (article type, contribution, prior dissemination, conflicts/funding, special
notes). Editors may-adjust the final category upon acceptance:
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JSUCIT Policies

Peer Review Policy - JSUCIT (Triple-Blind)

JSUCIT uses a triple-blind peer-review model: authors and reviewers remain
anonymous throughout the process. Editorial decisions are guided by recognized
publication-ethics standards (e.g., COPE, CSE) and by the journal’s scope and
quality criteria.

Process Overview

o Editorial screening (desk review): The Editor-in-Chief or a delegated
Associate Editor checks fit with JSUCIT scope, originality, quality, and IEEE
formatting; submissions may be declined at this stage.

o Reviewer assignment: Suitable manuscripts are sent to 3 independent
experts for triple-blind review.

« Evaluation: Reviewers assess significance, relevance, methodological rigor,
clarity, ethics/compliance, and reproducibility (where feasible).

o Decision: Accept, Minor Revision, Major Revision, or Reject; the decision is
approved by the Editor-in-Chief and communicated to the corresponding
author.

o Typical timeline: ~2-3 months end-to-end, depending on reviewer
availability and revision cycles.

Revisions & Proofs

+ Revision deadlines: Normally 60 days forthe first revision and 20 days for
subsequent rounds; late Submissions may be treated as new,

« Page proofs: Accepted papers receive proofs for correction of typesetting
errors; return’‘within 14 calendar days. '

Reviewer Résponsibilities (Triple-Blind)

« Confidentiality: Treat manuscripts as confidential; do not share without
permission. : ’

. Objectivity " & constructiveness: Provide numbered, evidence-based
feedback; avoid personal criticism.
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o Ethical vigilance: Flag plagiarism, duplicate publication, image
manipulation, undisclosed conflicts, or ethical issues.

o Relevant literature: Suggest key, unbiased references that may have been
missed.

o Conflicts of interest: Decline if a significant conflict could bias the review,
or disclose it immediately.

« Scope & quality: Consider structure, clarity, methods, analysis, conclusions,
and alignment with JSUCIT guidelines and IEEE style.

Guidance to Reviewers

Accept invitations only when you have appropriate expertise and can meet the
deadline; otherwise decline promptly (you may suggest qualified alternatives).
Focus on originality, methodological soundness, clarity, and fit within JSUCIT’s
scope. If recommending revision, provide actionable suggestions; if recommending
rejection, explain why the manuscript is unlikely to become publishable.

Editorial Independence & Responsibilities

Final decisions rest with the Editor-in-Chief (with input from Associate Editors and
reviewers). Editors safeguard the integrity of the record, issue corrections/etrata
when necessary, and uphold impartiality independent of institutional or commercial
interests. —
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Aligning ICT Ambitions with Reality: The Impact of
Technology on Education in Saudi Arabia

Saad Alaklabi
Information Systems Department, College of Computing and Information Technology, Shaqra University
Email: salaklabi@su.edu.sa

Abstract The application of Information and Communication Technologies (ICTs) in academia is generally classified into three
classes: ICTs as supporting tools, ICTs as subjects of study, and ICTs as drivers of transformation. The primary objective of the
research was to assess and analyze the state of ICT resources in the Kingdom of Saudi Arabia (KSA) educational institutions. In
light of Saudi Arabia’s Vision 2030, which prioritizes digital transformation and the integration of technology into education as a
foundation for building a knowledge-based economy. This research aimed to explore the objectives that academia had for
incorporating ICTs into their teaching, to examine whether institutes possessed the essential ICT infrastructure to achieve these
objectives, and to evaluate whether the actual use of ICTs aligned with these stated objectives. Furthermore, this study also sought
to identify any discrepancies between private and government schools in their approach to ICT integration. To gather data, we
employed a hybrid approach which involve interviews and surveys distributed digitally via email and messaging platforms. The
findings revealed that while intermediate schools and a significant number of secondary schools claimed to support transformative
or innovative applications of ICTs, the reality was different. Access to laptops, PCs, peripherals such as printers, scanners,
projectors etc., and the Internet connectivity for Saudi students was largely adequate. The availability of software was largely
confined to basic productivity tools, limiting the scope of ICT use primarily to equipping students with basic computer operational
skills. Although private schools were found to be better equipped than public schools, the overall use of ICTs in education remained
similarly constrained across both sectors. The research highlighted a gap between the potential transformative goals that some
schools professed and the actual, more limited application of ICTs in practice.

Index Terms— ICT, Education technology, Schools education, Computers in Education, Saudi schools.

components of computers, the principles of computer
programming, and how to traverse user interfaces in order to
gain proficiency in technology [9]. The transformative
application of ICTs in education lies in their ability to
redefine teaching and learning processes. By integrating

I. INTRODUCTION

The application of information and communication
technology (ICT) can be classified into three main classes i.e.
ICTs as supporting tools, ICTs as subjects of study, and ICTs

as drivers of transformation. ICTs are often used to assist
educators in schools, colleges, and universities in traditional
methods of teaching in subjects like languages, science,
mathematics, business studies, economics, engineering and
technology [1], [2], [3]. For example, teachers use digital
projectors for presentations and spreadsheets for recording
grades, whereas students use word processors for writing
reports, and assignments [4], [S]. Computers are mostly used
as calculators, grade books and typewriters [6]. Moreover,
tutors employ drills and tutorials to enhance students’
understanding and competence in a subject [7], [8]. When
ICTs are studied as subjects then the primary focus remains
on the technology itself. Students study about the history and

Alaklabi, S. (2025). Aligning ICT Ambitions with
Reality: The Impact of Technology on Education in
Saudi Arabia. Journal of Shagra University for Computing
and Information Technology, 1(1), 1-12.

Vol.1, Issue 1

ICTs into educational practices, one can optimize learning
experiences and enhance the development of essential
expertise such as critical thinking, independent and
cooperative learning, and problem-solving. ICT integration
is continuously shifting paradigm in education from teacher-
centered, didactic approaches to student-centered,
experiential learning. This shift emphasizes problem-
solving, critical thinking, and collaboration. These
approaches are interconnected, the most significant
transformations in teaching and learning are realized when
all three are integrated [10]. Saudi Arabia has actively
pursued the integration of ICT into its educational strategies,
particularly under the framework of Vision 2030 [11].
Initiatives such as the Tatweer Education Reform Program
[12], the Madrasati e-learning platform [13], and the
National e-Learning Center [14] have emphasized
technology’s role in enhancing teaching and learning.
Earlier, the Future Gate project [15] introduced smart

December, 2025



classrooms and digital content, laying the foundation for
more advanced integration. Vision 2030 highlights the
importance of ICT in preparing students for a knowledge-
based economy and equipping them with digital skills.
Despite the importance of ICT integration in education, the
Saudi school system continues to face challenges, especially
in ensuring equitable access to ICT resources. While many
urban schools are equipped with smart boards, computer
labs, and internet connectivity, some rural schools still
experience disparities. Similar to global trends, the rapid
integration of ICTs in Saudi education has outpaced the
availability of quantitative data on its impact in classrooms.
There remain concerns about whether ICT tools are being
effectively utilized for transformative learning, as many
teachers continue to rely on traditional methods and employ
ICT primarily as a supportive tool. While the Ministry of
Education has expanded ICT infrastructure, gaps in teacher
training, curriculum alignment, and interactive classroom
integration persist. This study investigates the integration of
ICTs in schools in Saudi Arabia. It aims to approximate
educators' ICT goals, assess the availability of ICT resources,
evaluate the alignment between resource utilization and
goals, and compare ICT integration between public and
private schools. ICT applications were categorized as
support tools, transformative catalysts or subject matter.

II. RELATED WORKS

In Saudi Arabia, despite the Ministry of Education’s large-
scale investments under Vision 2030 [11] and programs such
as Tatweer [12] and the Madrasati digital platform [13], ICT
usage in classrooms often focuses on productivity tools
rather than fostering deeper pedagogical innovation [15][22].
Teachers in KSA frequently report using ICT to reinforce
existing instructional methods rather than transform them.
This pattern, however, is not unique to the Kingdom. When
new innovations are introduced in classrooms, many
educators tend to adapt them to align with traditional teacher-
centered approaches. Research from the U.S [16] shows that
most teachers who integrate technology primarily focus on
developing students’ proficiency in word processing and
similar applications. More advanced uses of ICT, such as
higher-order reasoning, problem-solving, or critical
thinking, remain less common. Instead of reshaping teaching
practices, these tools often reinforce conventional methods.
As a result, the educational reforms anticipated by
policymakers, educators, and parents have not been fully
realized, with goals such as improved learning outcomes,
teacher productivity, and transformative educational
practices remaining elusive. Larry Cuban [17] similarly
argues that despite substantial investments in educational
technologies, expected outcomes have yet to materialize.
Supporting this view, [18] reported that 61% of teachers
assigned word processing or spreadsheet-based tasks, while
only 50% encouraged problem-solving or data analysis
activities. This highlights a common trend where ICTs are

Vol.1, Issue 1

employed more for maintaining traditional practices than
driving innovation [19] [20]. Although technology has been
widely introduced into schools, the anticipated
transformation of teaching and learning has often lagged
behind, with computers used mainly for routine classroom
tasks. For instance, [21] observed that in the U.S., around
71% of teachers occasionally assigned computer-based
tasks, but only a third did so regularly, with most usage
confined to business, English, vocational, or computer
science subjects. Similarly, in many contexts, computers
were still used for drills and rote learning, rather than to
encourage inquiry or independent learning. In both public
and private Saudi schools, students are introduced to
computer literacy at an early stage, but the focus remains
largely on skill acquisition rather than higher-order
applications such as simulations, modeling, or interactive
STEM learning. A nationwide study in Saudi schools (e.g.,
Tatweer evaluation reports) has revealed that while digital
platforms like Madrasati were widely adopted during and
after the COVID-19 pandemic, much of their use was
concentrated on delivering assignments, online lectures, and
administrative tasks, with less emphasis on interactive,
student-centered learning [23].

[24] explored the shift toward digital education in Saudi
schools, examining its influence on student performance,
teaching practices, curriculum alignment, infrastructure
limitations, software effectiveness, and the viewpoints of
educators and specialists. Data were collected from 476
respondents using a structured questionnaire and analyzed
through SPSS. The study’s distinctiveness stems from its
holistic assessment of Saudi Arabia’s digital education
transition, integrating insights from both teachers and
experts. By addressing academic, technical, and experiential
challenges, it provides valuable understanding of the
multifaceted nature of digital education implementation in
the Saudi context. Qualitative research by [25] examines
how Al supports emotional recognition, promotes socio-
emotional growth, and tackles related challenges within
Saudi Arabian schools. Using purposive sampling, 55 early
childhood education teachers in Jeddah were interviewed,
with data saturation reached after 50 interviews. The findings
reveal that Al effectively personalizes learning according to
individual needs and learning styles, nurtures empathy and
peer interaction among children, and improves classroom
management. Key challenges include data privacy, cultural
relevance of Al tools, and equitable technology access. The
study emphasizes the need for comprehensive teacher
training, clear ethical standards, and strong policy
frameworks to ensure responsible Al integration in Saudi
education.

[26] utilized professional capital theory as a conceptual
framework, emphasizing human, social, and decisional
capital to examine educators’ readiness, collaboration, and
instructional decision-making. Results indicated notable
contrasts in how school leaders developed their human
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capital (HC) and how this subsequently affected social
capital (SC) and decisional capital (DC) within both
institutions. In the high-achieving school, leaders actively
participated in professional growth, mentorship, and joint
decision-making, promoting a culture of collective learning
(SC). This cooperative setting allowed teachers to share
effective teaching practices, thereby enhancing their capacity
for evidence-based instructional choices (DC). Conversely,
the low-performing school faced frequent leadership
changes, causing loss of institutional knowledge and
insufficient investment in leaders’ human capital.
Consequently, teachers encountered difficulties in applying
innovative strategies, engaged in limited collaboration, and
lacked consistent support. These contrasts underscore how
disparities in leaders’ human capital shape teachers’ ability
to implement new teaching methods effectively.

The Ministry’s own reviews have also highlighted a
persistent gap between ICT potential and its classroom
application, particularly in subjects such as science and
mathematics, where integration is limited. Similar to
findings in other countries [27], ICTs in KSA are often
perceived as supplementary supporting information access,
assignment submission, and report generation rather than
being fully embedded in subject-based pedagogy. This
indicates that despite strong policy direction under Vision
2030 and substantial resource allocation, ICT in Saudi
classrooms is still more aligned with traditional educational
practices than with the transformative goals of digital
learning. A stronger focus on teacher training, Arabic-
language educational software, and subject-specific ICT
integration remains necessary to bridge the gap between
policy aspirations and classroom realities.

III. OBJECTIVE

The objectives of this study are given in the following:

1. To map the current state of ICT resources in Saudi
intermediate and secondary schools and measure
their adequacy for transformative learning.

2. To examine whether the actual use of ICTs aligns
with the educational goals envisioned under Vision
2030.

3. To identify discrepancies between public and
private schools in ICT integration strategies,
infrastructure, and pedagogical application.

4. To highlight the barriers technical, financial, and
pedagogical that prevent ICT from serving as a
driver of educational transformation.

By connecting policy aspirations to ground realities, this
research contributes a novel evaluative framework for
assessing the effectiveness and equity of digital

Vol.1, Issue 1

transformation in education, offering actionable insights for
policymakers and educational planners in Saudi Arabia and
other nations undergoing similar digital transitions.

IV. METHODOLOGY

We have employed a mixed methods approach to collect data
such as Interviews, emails, and on-site visits. A stratified
random sampling method was used to select a representative
subset of Saudi intermediate and secondary schools, as
surveying all schools was impractical. This approach ensured
proportional inclusion across key categories school
ownership (public/private), educational level
(intermediate/secondary), and location (urban/rural)
enhancing representativeness and precision over simple
random sampling. Stratification minimized bias, enabled
comparisons across contexts, and supported the study’s
mixed-methods design. Weighted statistics, based on student
distribution, ensured appropriate influence of larger schools.

A. Population and Sampling

The target population included intermediate and secondary
schools in Saudi Arabia, encompassing both public and
private sectors. Given the extensive geographic distribution
and diversity of institutions, a stratified random sampling
approach was adopted to ensure balanced representation
across three key strata:

1. School ownership: public vs. private,

2. Educational level: intermediate vs. secondary, and

3. Geographical location: urban vs. rural areas.

Stratified sampling was chosen over simple random or
systematic methods to improve representativeness and
comparative validity. This method ensured that variations in
infrastructure, resource allocation, and ICT integration levels
across different strata were captured accurately. Out of 286
schools contacted, 215 schools (75%) responded,
representing 10,635 students from public schools and 3,532
from private schools. The reported statistics were weighted
according to student distribution, ensuring that data reflected
the actual proportion of students within each category.

B. Questionnaire

Two structured questionnaires were designed one for school
principals and another for ICT coordinators. The principal
questionnaire focused on the history of ICT adoption,
school-level goals, and policy implementation challenges.
The ICT coordinator questionnaire addressed technical
aspects of ICT infrastructure, software availability, and
usage in pedagogy. The instruments were adapted from the
International Association for the Evaluation of Educational
Achievement (IEA) framework (Schulz & Carstens, 2020) to
ensure reliability and cross-study  comparability.
Each questionnaire included closed-ended items (five-point
Likert scale) for quantitative analysis and open-ended
questions for qualitative insights. To validate the
instruments, a pilot test was conducted in ten schools, after
which ambiguous items were revised based on expert
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feedback from educational technology specialists. The
internal consistency reliability of the quantitative items was
verified using Cronbach’s alpha (o = 0.87), indicating strong
reliability.
C. Interviews

Semi-structured interviews were conducted with school
principals and ICT coordinators from a subset of 30 schools
(15 public, 15 private). The interviews explored perceived
barriers, teacher readiness, ICT policy alignment, and
attitudes toward technology integration. Interviews were
transcribed and thematically coded to complement the
quantitative findings.

D. Data Collection

Data were collected over a six-month period using both
digital and in-person methods. Questionnaires were
distributed through email and messaging applications such
as WhatsApp, while follow-up interviews were conducted
online and during on-site visits. The mixed-mode approach
increased the response rate and ensured regional
representation.

E. Data Analysis
Data analysis followed a two-stage approach combining
quantitative and qualitative methods:
L Quantitative Analysis
Descriptive statistics (frequencies, means, and
percentages) were used to summarize ICT availability
and usage. Comparative analyses examined
differences between school types (public vs. private)
and levels (intermediate vs. secondary). Correlation
analysis measured the relationship between ICT
infrastructure and pedagogical application (r = 0.61—
0.73), while cross-tabulation assessed the alignment
between schools’ ICT goals and actual
implementation.

L Qualitative Analysis:

Thematic analysis was conducted using open and
axial coding of interview transcripts. Emerging
themes included resource inequality, teacher
readiness, and policy—practice gaps. Triangulation of
quantitative and qualitative data enhanced the validity
and depth of the findings, providing a comprehensive
understanding of ICT integration within Saudi
Arabia’s educational framework.

F. Ethical Considerations

All participants were informed about the purpose of the
research and assured of confidentiality. Participation was
voluntary, and no personal identifiers were recorded.
Institutional approval was obtained from the relevant
educational authorities prior to data collection.

G. Research Questions

This study was guided by the following research questions:

Vol.1, Issue 1

1. RQ1: What is the current state of ICT infrastructure
and resource availability in Saudi intermediate and
secondary schools?

2. RQ2: To what extent do schools’ ICT applications
align with their stated educational and pedagogical
goals, particularly those consistent with Vision
20307

3. RQ3: How do public and private schools differ in
their ICT integration strategies, infrastructure
investment, and pedagogical practices?

4. RQ4: What key barriers and enabling factors
influence the effective implementation of ICTs as
transformative learning tools in Saudi education?

V. RESPONDENT DEMOGRAPHICS

Out of the 286 surveyed Saudi Arabia’s intermediate and
secondary schools, (215) 75% responded, representing
10,635 students from public schools and 3,532 from private
schools. Application of ICTs in KSA schools is still at its
stage of infancy. As shown in Figure 1, 60% of students
admitted to public intermediate schools had been using
computers for two years or less, 34% three to five years, and
19% for six to ten years. Similarly, 58% of students in private
intermediate schools had been using computers for two years
or less, 35% for three to five years, and 25% for six to ten
years. Private schools demonstrated higher ICT integration
compared to their public counterparts. At the secondary
school level, both private and public institutions showed
increased computer usage. Approximately 74%, 42%, and
25% of private secondary school students, and 73%, 40%,
and 22% of government secondary school students, had two
years, three to five years, and six to ten years of experience
using computers for learning purposes. These trends
continued with private institutions demonstrating slightly
higher levels of computer proficiency across all experience
categories. Nearly all secondary institutes assessed provided
the full cycle of secondary education and were actively
applying ICTs in their learning and teaching processes. ICT
usage in secondary schools ranged from medium- to long-
term durations.

o

Students (%)

2%

20% g

L0 pars

Figure 1 Ratio of ICTs usage in KSA Schools
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VI. CURRICULUM AND PEDAGOGY

The application of ICTs in education is diverse, influenced
by various factors such as country, educational level, and
type of school. Educational goals for ICT integration vary
widely across these contexts. At the intermediate and
secondary levels, most of the respondents focused on
foundational ICT skills rather than advanced applications.
Less than half of the principals of intermediate and
secondary schools regarded the adoption of personalized
learning, promotion of independent learning, and active
learning plans as highly significant in guiding the usage of
ICTs (Figure 2). Drill-and-practice exercises and cooperative
learning were not considered crucial for ICT integration in
intermediate and secondary schools. Moreover, only 48% of
principals identified enhancing student engagement as a
primary goal for ICT use. Private school principals were
more emphatic than those in public schools about the
importance of emerging ICT applications. Many prioritized
improving student performance and incorporating active
learning strategies. This study also linked these differences
in priorities to the resources available in public schools.
During interviews, some public intermediate and secondary
school heads questioned if the scenarios presented were
realistic or idealized, often beginning their responses with,
“If we had computers secondary schools placed a greater
emphasis on emerging ICT applications compared to
intermediate schools. Between 70—75% of Saudi secondary
school (public and private) students attend institutions
employing ICTs to enhance student performance through
drill and practice, active learning, independent study, and
engaging learning experiences. Figure 2 reveals a disparity
in ICT integration between public and private secondary
schools. While both sectors emphasized student achievement
and drill-and-practice exercises, private schools showed a
stronger inclination towards cooperative learning.
Conversely, public schools prioritized ICTs for enhancing
overall learning experiences. In contrast, secondary schools
exhibited a more improved level of ICT integration. Figure 3
demonstrates a stronger emphasis on integrating ICTs into
instruction and fostering independent learning among
secondary school educators. Data analysis revealed a
pronounced disparity in ICT integration between public and
private schools. Private institutions demonstrated a stronger
commitment to transformative ICT applications, particularly
at the intermediate level, where independent learning was
emphasized. Conversely, public schools exhibited a more
limited scope of ICT utilization. The availability of computer
hardware and the implementation of internet-related
initiatives were less prevalent in public compared to private
institutions. This disparity contributed to a narrower focus on
ICT applications within public schools. Financial constraints
within public schools significantly hampered ICT
integration. Limited budgets, primarily allocated to basic
operational costs such as utilities and supplies, restricted the
acquisition of essential ICT infrastructure like computers and
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internet connectivity. As a result, the implementation of
advanced ICT applications was deemed impractical.

Figure 2 shows the proportion of schools prioritizing
specific ICT goals

Figure 3 illustrates the proportion of schools successfully
implemented specific ICT-related policy goals.

VII. OUTCOMES OF LEARNING ABOUT ICT

Schools in Saudi Arabia (KSA) primarily utilize ICT
resources to develop fundamental computer skills. Survey
results indicate that 70-79% of students are expected to
achieve computer operation proficiency, while 66—70% are
anticipated to use word processing before completing
secondary school education. Additionally, spreadsheet skills
(60% in private and 67% in public) and basic programming
(33-44%) are emerging as part of the curriculum. ICTs are
primarily employed as productivity tools within the primary
curriculum. Word processing is widely used for tasks such as
writing and creative writing projects. Private primary schools
generally implemented a broader ICT curriculum,
emphasizing internet skills. In contrast, public schools
exhibited a narrower focus, with less emphasis on
developing students' internet competencies. Computer skills,
including word processing, graphic design, and spreadsheet
calculations, remain a core component of secondary
education. While both public and private schools emphasize
these fundamentals, secondary schools in KSA exhibit a
stronger focus on internet-related skills. Approximately half
of secondary students utilized email and internet resources.
Private schools demonstrated higher rates of internet
integration compared to their public counterparts.
Programming is less emphasized, with less than 50% of
secondary students attending schools that mandated such
courses. Analysis revealed that the emphasis on computer
literacy often overshadowed pedagogical integration. Many
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teachers lacked the necessary training to effectively
incorporate ICT into their subjects, often relying on external
agencies for ICT instruction. This approach frequently
prioritized basic computer skills over the development of
higher-order thinking abilities.
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Figure 4 shows essential ICT Skills for Secondary School
Graduates in Saudi Schools

VIII. ICT RELATED LEARNING OPPORTUNITIES

A key problem concerning schools' ICT goals is the extent
of learning opportunities they provide using ICTs. These
opportunities include using various ICT applications,
accessing the Internet, and engaging with pedagogical
procedures. Figure 5 reveals that many secondary school
learners in Saudi Arabia (KSA) had limited exposure to a
broad range of ICT applications. At most, students had
experience with word processing and basic Internet use.
Although private secondary schools generally offered a
wider range of computer applications than public schools,
the available tools were mostly restricted to basic operations,
CD-ROM  encyclopedias, spreadsheets, and word
processors. These tools facilitated ICT learning and served
as supplementary resources for other subjects. Conversely,
only about 20-50% of secondary school learners had access
to more advanced technologies such as data manipulation
software, computational modeling, and data visualization,
which are essential for supporting emerging or
transformative ICT practices. At the secondary level,
learners had more opportunities to engage with ICTs
compared to primary students. However, access to advanced
tools such as data manipulation software, mathematical
modeling, and simulation was far less prevalent (under 25%).
Private schools demonstrated greater access to a wider range
of ICT applications, including computer programming. This
contrasted sharply with public schools, which primarily
focused on foundational software skills such as word
processing (nearly 98%) and basic spreadsheets (85%).
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Figure 5 Student Exposure to ICT Applications in Schools

IX. OPPORTUNITIES FOR INTERNET USE

Secondary school students in Saudi Arabia (KSA) now
benefit from widespread Internet access in schools. Recent
surveys indicate that over 85% of secondary schools are
equipped with Internet facilities for educational purposes,
reflecting the country’s rapid digital transformation. At the
advanced levels of secondary education, accessibility is even
stronger, with technical staff reporting that nearly 90% of
students attend schools with Internet-connected classrooms.
Private schools generally surpass public schools in terms of
connectivity and integration. For example, while Internet
access in public secondary schools is available to around
80% of learners, this figure rises to 95% in private
institutions. At the intermediate level, access is somewhat
less comprehensive, with about 70-75% of students able to
engage with Internet-based applications. Innovative online
practices, such as email for group projects, cloud-based
collaboration, and web-based research, are increasingly
common especially in private schools. Public schools, while
rapidly expanding their digital infrastructure, still face
challenges related to bandwidth, student-to-computer ratios,
and equitable access across regions. At the secondary level,
Internet-based information seeking has become a
mainstream activity, with over 80% of students regularly
using online resources for academic purposes. Teacher—
student email communication and online learning platforms
are now part of the routine learning environment. Technical
staff also reported that in many public schools, 80—-85% of
students actively participate in online activities, reflecting
broader ICT adoption. Private schools, in particular, often
adopt a strategic approach to ICT integration using high-
speed Internet, dedicated e-learning platforms, and
collaborative tools to enrich traditional teaching methods.
For instance, one private school reported having over 250
computers, with nearly all connected to the Internet, enabling
a more equitable student-to-computer ratio. While
challenges of accessibility remain in some overcrowded
schools, the overall exposure of students to Internet-based
learning opportunities in KSA is now substantially higher
than in earlier years.
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Figure 6 Student Engagement in ICTs activities

X. USE OF ICT’S FOR OTHER PEDAGOGICAL PRACTICES

In this study, we aimed to explore whether institutions in
Saudi Arabia (KSA) utilized ICTs to assist innovative or
unconventional teaching methods. These approaches
included applications such as specialized software for
students with disabilities, accelerated programs for gifted
learners, and electronic platforms for collaborative learning.
At the secondary level, schools still relied largely on ICTs
for drills and tutorials designed to strengthen student
performance in specific subjects, reflecting support for
conventional teaching practices. In the Saudi context,
specialized software and hardware for students with
disabilities remain limited, particularly in public schools.
Most educators depend on low- to mid-tech assistive devices
such as screen magnifiers and talking calculators rather than
high-end digital solutions. Teachers often report barriers
such as limited funding, insufficient training, and the rigidity
of the curriculum, which restrict broader integration of
advanced technologies for students with special needs.
During one observed visit to a public intermediate school,
ICT was integrated into a science lesson on pendulums.
Students were divided into groups and engaged in different
activities such as consulting a CD-ROM encyclopedia for
information on oscillation, reviewing printed materials,
constructing a pendulum from recycled items, and
documenting their findings. Each group rotated through the
stations, allowing students to combine technology-based
research with hands-on experimentation. Secondary schools,
particularly private institutions, demonstrated a wider range
of ICT applications. These schools increasingly employed
ICTs to support advanced learning programs for gifted
students, remedial instruction for struggling learners, and
collaborative activities supported by digital platforms. The
introduction of national initiatives such as Madrasati and Al-
driven learning platforms under Vision 2030 has further
strengthened opportunities for digital collaboration and
personalized education in private schools. Public schools
also adopted some of these practices but typically
emphasized more foundational ICT skills and less
specialized applications compared to private institutions as
shown in Figure 7.

Vol.1, Issue 1

. Frivate Intermediate Schoals.
= public Intermeidate Schools
0% . Frivate Secondary
60 W Public Secondary

Percentage (%)

Tutorials Advanced Leamers Program Collaborative Initiatives Intervention Strategies
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XI. INFRASTRUCTURE

The availability and quality of ICT infrastructure
significantly influences its educational impact. The
following section explores the ICT resources accessible to
Saudi students and their effectiveness in supporting learning.

A. Hardware (multimedia and peripherals

A useful measure of equipment access is the student-to-
computer ratio. Table 1 shows that in public intermediate
schools, the average ratio is roughly 0.6 students per
computer, while in private intermediate schools, it's closer to
1 per 15 students reflecting stronger ICT investment in the
private sector. At the secondary level, public schools average
about 30 students per computer, whereas private secondary
have about 1 per 18 students. Although access has improved
in KSA compared to earlier years, ICT resources such as
computers still tend to be centralized: approximately 85% of
computers are housed in traditional computer labs, with the
remainder integrated into classrooms or administrative
offices.

Table 1. shows available computer system for students in
schools

S.No | Schools Computer per Students

1 Private Intermediate | 1 Computer per 15 Students
Schools

2 Public Intermediate | 1 Computer per 25 Students
Schools

3 Private Secondary | 1 Computer per 18 Students
Schools

4 Public Secondary | 1 Computer per 30 Students
Schools

Multimedia capability is more common in Saudi schools than
before. Today, around 80% of public schools and 95% of
private schools are equipped with sound-capable computers
and multimedia-ready systems including at least speakers,
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basic audio, and projector support. Regarding hardware
specifications, most systems are modern and capable: a
recent study found that the average school has about 17
computers, many of which are networked to the Ministry's
administrative hub. As part of ongoing Vision 2030 reforms,
schools are being equipped with more current computers
running modern operating systems like Windows 10 or 11,
though some legacy machines persist in older facilities. The
distribution of peripheral devices has also improved. While
public schools continue to have fairly basic setups (like
printers and CD drives), private schools often also include
LCD projectors, scanners, and smartboards. Overall, for
secondary schools combined, it's estimated that 70-85% of
students have access to color printers and CD features, while
LCD access is available in 70-80% of classrooms. However,
actual student usage remains limited compared to availability
due to high student-to-device ratios.
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Figure 8 Multimedia and Peripheral Availability in Saudi
Schools

B. Sofiware

The scope of ICT use in schools significantly depends on
the software available. In Saudi Arabia, between 100% of
schools now provide access to office suites like Microsoft
Office (Figure 9 equivalent). Some students also engage with
educational and recreational software. Private schools tend
to offer a broader range of software. In fact, around 100% of
private institutions report providing students with
presentation  tools, spreadsheets, word processing
applications, and educational games. A notable number of
secondary learners especially in private schools also have
access to web browsers, basic statistical programs, and some
art- or music-related educational software. More than 40%
of students utilize educational games, drill-and-practice
apps, and tutorials. However, specialized software such as
music composition tools, modeling platforms, and
simulations remains uncommon across most schools. At the
secondary level, students in both public and private schools
have access to spreadsheets, databases, presentation tools,
word processing, and graphics software. A portion of private
school students estimated at 90 to 95% also use internet-
based tools such as email, web browsers, and basic
programming environments. Still, software supporting more
innovative or emerging ICT applications remains limited. In
our survey, only five private secondary schools reported
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access to software tailored for subjects like advanced
computer studies, English, or mathematics. Programs
specifically for subjects such as history, civics, or the
sciences were virtually absent. Follow-up inquiries indicated
that available software is mainly used to reinforce traditional
teaching methods rather than facilitate interactive or subject-
specific learning. In some public secondary schools with
functional computer labs, students were occasionally asked
to conduct web-based research for projects. Generally,
students have access to software centered on core subjects
like English, mathematics, and science. However, support
for local language instruction such as Arabic remains
minimal; many schools simply rely on Microsoft Word for
typing Arabic compositions. Significant subject-based
software in areas like social studies or civics is still largely
unavailable. Nevertheless, software for computer literacy
remains widespread aligning with the national emphasis on
digital skills. In a few private schools, the ICT curriculum
spans multiple years and includes training in keyboarding,
presentations, spreadsheets, and word processing. Such
foundational tools are present in both public and private
institutions.
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Figure 9 Illustrates different software available in Saudi
schools.

XII. COMPARATIVE ANALYSIS: PUBLIC VS. PRIVATE
SCHOOLS

A comparative assessment revealed statistically
significant disparities between public and private schools in
both ICT access and pedagogical integration. For example,
as shown earlier (Figure 1 and Table 1), private intermediate
schools reported an average student-to-computer ratio of
1:15, compared with 1:25 in public schools. Similarly, at the
secondary level, private schools maintained a ratio of 1:18
compared to 1:30 in public institutions. This difference
corresponded with stronger implementation of student-
centered learning in private schools, where 74-75% of
students engaged in independent or collaborative ICT-based
activities, versus 58—60% in public schools. The comparative
data suggest that hardware availability directly influences
pedagogical innovation. Schools with better infrastructure
were more likely to use ICT for interactive learning, data
analysis, and project-based assignments. In contrast, schools
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with limited infrastructure relied heavily on traditional drill-
and-practice exercises. This aligns with global evidence
(Hillmayr et al., 2020) that adequate ICT resources correlate
positively with higher-order learning outcomes.

Table 2. Comparative Analysis of ICT Infrastructure between
Public and Private Schools

ICT Indicator Public Private | Public | Private
Interme | Interme | Secon | Secon
diate diate dary dary
Student-to- 1:25 1:15 1:30 1:18
computer ratio
Internet access 80 95 85 98
(%)
Multimedia 80 95 85 98

capability
(computers
with
sound/projecto
r support) (%)
Availability of 100 100 100 100
productivity
software (MS
Office,
spreadsheets,
etc.) (%)
Subject- 35 62 40 70
specific or
educational
software (%)
Access to 60 88 68 90
smartboards/pr
ojectors (%)

XIII. CORRELATION BETWEEN INFRASTRUCTURE AND
LEARNING OUTCOMES

Correlation analysis as shown in Table 3 was conducted to
examine the relationship between ICT infrastructure
availability (hardware, software, and internet access) and
learning outcomes (measured through the extent of ICT-
based independent learning, problem-solving, and critical
thinking activities). A moderate positive correlation (r =
0.61) was observed between hardware adequacy and the
integration of ICT into classroom instruction. Likewise,
internet connectivity showed a stronger association (r =0.73)
with the adoption of collaborative learning platforms and
cloud-based assignments, particularly in private schools. The
data indicate that infrastructure quality is not merely a
support variable but a key predictor of pedagogical
transformation. Schools with high-speed internet and
sufficient digital devices were nearly 1.8 times more likely
to implement student-centered ICT strategies compared to
schools with basic setups.
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Table 3. Correlation Matrix between ICT Resources and
Pedagogical Practices

Variable Independent | Collaborative | Problem-

Learning Learning solving/Project
Work

Hardware r=0.61 r=0.58 r=0.63

adequacy

(computer

access)

Internet r=0.73 r=0.71 r=0.68

access

quality

Teacher r=0.69 r=0.75 r=0.72

digital

training

Availability | r=0.66 r=0.64 r=0.70

of

educational

software

XIV. CROSS-TABULATION OF ICT GOALS AND
APPLICATIONS

Cross-tabulation analysis between school ICT goals
(Figure 2) and actual applications (Figures 5—7) showed that
only 48% of schools that prioritized “enhancing student
engagement” had implemented active learning tools such as
simulations or collaborative software. In contrast, over 80%
of schools that set goals related to “basic ICT literacy” fully
achieved them through word processing and spreadsheet use.
This finding as shown in Table 4 highlights a goal-
implementation gap, where transformative objectives such as
independent learning and critical thinking are often stated in
policy but rarely achieved in practice.

Table 4. Cross-Tabulation of ICT Goals and Actual

Implementation
Schools
Schools Successfull Implementation
Stated ICT Goal Prioritizing Y P o
o Implementing Goal |Gap (%)
Goal (%) o
(%0)
Enhancing student 55 48 7
engagement
Promoting
independent 52 42 10
learning
Supporting
collaborative 49 39 10
learning
Improvmg digital 35 30 s
literacy
Encouraging
problem- 45 33 12
solving/critical
thinking
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XV. THEMATIC ANALYSIS OF QUALITATIVE DATA

Interview transcripts were thematically analyzed using
open and axial coding. Three dominant themes emerged:

* Resource Inequality: Administrators from public
schools consistently cited limited budgets and outdated
hardware as primary barriers. Teachers reported sharing
computer labs among multiple classes, resulting in restricted
practice time.

* Teacher Training and Readiness: Nearly 65% of
respondents acknowledged that teachers lacked formal ICT
pedagogical training, leading to dependence on basic
productivity tools. Interview excerpts indicated that even
when digital platforms were available, many educators were
not confident in integrating them into subject teaching.

* Policy-Practice Misalignment: School heads noted that
while Vision 2030 emphasizes digital transformation,
classroom-level execution remains constrained by rigid
curricula and insufficient localized educational software,
particularly in Arabic.

These qualitative insights reinforce the quantitative
findings, revealing systemic and pedagogical barriers that
limit ICT’s transformative potential.

XVI. INTEGRATED INTERPRETATION

By combining these analyses, the study identifies a clear
structural and pedagogical divide in Saudi ICT integration.
Private schools, benefiting from superior infrastructure and
management flexibility, are advancing toward digital
transformation, while public schools remain in an early
adoption phase. The alignment between infrastructure
adequacy, teacher competence, and curriculum flexibility
emerges as the strongest predictor of ICT effectiveness. This
integrated analysis not only validates the descriptive data but
provides scientific and policy-relevant explanations of how
ICT adoption varies across educational settings and why
digital equity remains a major challenge.

XVII. CRITICAL INTERPRETATION OF FINDINGS

The comparative results show that private schools
outperform public schools in nearly all ICT indicators:
computer-to-student ratios, multimedia resources, and
internet connectivity. However, this disparity extends
beyond material access. Private schools demonstrate higher
pedagogical innovation, employing ICTs for independent
and collaborative learning, whereas public schools primarily
use them for routine administrative or drill-and-practice
purposes. This pattern reflects what Larry Cuban (2001)
termed the “supportive use trap”, where technology
reinforces traditional teaching instead of transforming it. The
moderate correlations (r = 0.61-0.73) between ICT
infrastructure and pedagogical practices suggest that
infrastructure alone is insufficient for transformation unless
accompanied by teacher digital competence and institutional
support. These findings align with Hillmayr et al. (2020),
who emphasized that meaningful digital integration depends
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more on pedagogical readiness than on the quantity of
devices. Furthermore, thematic analysis revealed that teacher
preparedness and curriculum flexibility are pivotal
constraints. The lack of targeted professional development
programs limits teachers’ confidence in embedding ICT into
subject-specific instruction. Consequently, ICT use remains
peripheral rather than integral to pedagogy. This reinforces
earlier research (Albugami & Ahmed, 2015; Al-Asmari &
Rabb Khan, 2014) showing that sustainable ICT adoption in
Saudi education depends on teachers’ pedagogical digital
literacy rather than infrastructure investments alone.

XVIII. IMPLICATIONS FOR EDUCATIONAL PRACTICE

The findings carry several implications for practitioners and
policymakers:

A. Teacher Training and Digital Pedagogy
Continuous professional development must move beyond
technical orientation to include instructional design using
ICT, emphasizing inquiry-based and project-driven learning
models. Training programs should be embedded in teacher
certification and renewal processes.

B. Curriculum and Assessment Reform

The current curriculum should be revised to integrate ICT
across disciplines, especially in STEM subjects, promoting
problem-solving and critical thinking. Assessment methods
should also evolve to capture digital competencies rather
than rote knowledge.

C. Equitable Resource Allocation
Policymakers should prioritize resource redistribution
toward public and rural schools to narrow the digital divide.
Targeted funding for hardware, software, and connectivity
can ensure equitable opportunities for digital learning.

D. Localized and Arabic-Language Educational
Software
A persistent gap in Arabic-language learning tools hinders
localized pedagogical integration. Developing culturally and
linguistically relevant educational software could increase
ICT’s relevance and classroom adoption.

E. Institutional and Policy Alignment

The study underscores the need for stronger alignment
between Vision 2030 digital education policies and school-
level implementation frameworks. Monitoring mechanisms
should measure not only device deployment but also
pedagogical outcomes.

F. Broader Theoretical and Policy Implications

From a theoretical standpoint, the findings affirm the
technology integration continuum model, suggesting that
Saudi schools remain at the “adoption” rather than
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“transformation” stage. Practically, this research contributes
a three-dimensional framework (support tool — subject —
driver of transformation) for evaluating ICT maturity, which
can serve as a diagnostic tool for other Gulf and developing
nations pursuing digital education reforms.

Future national strategies should move toward data-
informed decision-making, leveraging analytics from e-
learning platforms to personalize instruction and measure
digital learning impact. The transition from infrastructure
provision to pedagogical transformation will be the defining
challenge of the next phase of Saudi Arabia’s educational
modernization.

XIX. CONCLUSION

This study examined the current state of ICT integration
in Saudi intermediate and secondary schools through a
mixed-methods approach, combining survey data from 215
schools with qualitative interviews to capture both statistical
trends and contextual insights. A stratified random
sampling technique ensured balanced representation across
school types, levels, and regions. Quantitative data were
analyzed using descriptive, comparative, and cross-
tabulation methods, while qualitative data were
thematically coded to uncover underlying institutional and
pedagogical factors. The findings revealed that while ICT
infrastructure in Saudi schools particularly within private
institutions has improved substantially, the actual
pedagogical application of technology remains largely
confined to basic operational and productivity tasks. Public
schools, in particular, face ongoing challenges related to
limited hardware access, teacher training gaps, and
curriculum rigidity. The analysis demonstrated a clear
disconnect between the transformative goals envisioned
under Vision 2030 and the practical implementation of
ICT-based learning at the classroom level. Looking ahead,
future research should focus on developing and empirically
testing Al-driven adaptive learning systems, cloud-based
collaborative platforms, and Arabic-language
educational applications designed to promote critical
thinking and problem-solving skills. Additionally,
longitudinal studies should be conducted to evaluate how
ICT integration evolves over time and how it impacts student
outcomes, teacher competencies, and curriculum design.
Further exploration into policy effectiveness, digital equity
across regions, and the role of emerging technologies such
as augmented reality and data analytics in personalized
learning will provide deeper insight into achieving genuine
educational transformation under Saudi Arabia’s Vision
2030 framework.
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Our framework is an Adaptive Differential Privacy Federated Learning (ADP-FL) algorithm, which guarantees privacy protections
accounting for the data heterogeneity and maintains clinical utility. The system addresses wearable device constraints including
limited computational resources and non-IID data distributions. Evaluation using PhysioNet and MIMIC-III datasets demonstrate
87.3-92.1% accuracy for cardiac arrhythmia detection with differential privacy guarantees (epsilon 1.2-6.8). The system limits
membership inference attacks to near-random performance (51.2-53.8%) and maintains communication efficiency at 0.8 MB per
device per round with 3.2% battery overhead. Scalability testing with 5,000 devices shows minimal performance degradation,
establishing federated learning as viable for collaborative healthcare Al while preserving privacy.

Index Terms— federated learning, differential privacy, smart watches, privacy-preserving, healthcare data.

and unused due to privacy concerns; strict legal frameworks

[. INTRODUCTION further restrict data sharing even for research [6]; and the
Smart healthcare devices such as smartwatches and fitness highly ~diverse (“non-IID”) nature of wearable data
trackers are widely used to monitor heart rate, sleep, activity, complicates 'model 'performance. Whﬂej federated learnl.ng
and blood oxygen [1]. While millions benefit from these shows promise, major challenges remain. It struggles with
devices, they generate highly sensitive personal data. the diversity of health data, as each person’s information
Centralized collection raises privacy concerns about access vares by age, lifestyle, condition, and device. Differential
and misuse [2]. Yet, if managed securely, this data holds privacy can protect users but often reduces accuracy When
great potential for medical research and improved healthcare. applied to such heterogeneous data [7]. Resource limits—
Traditional machine learning, however, still relies on like computing power, memory, and battery—make many
centralizing data (Fig. 1). Patients’ health data must often be privacy—pre':serving methods imprgctical for wearables [8].
sent to central servers, raising discomfort and privacy risks These devices also generate continuous temporal data, yet
[3]. Federated learning offers a way to train Al models across most research remains theoreFlcal and overlooks real-world
institutions without direct data sharing, though it introduces implementation on actual devices and users.
its own challenges. Strict regulations like HIPAA (U.S.) and prT————
GDPR (Europe) require careful handling of health data [4], il — S
making centralized machine learning difficult. The key issue e TR |
is balancing the use of sensitive wearable data for healthcare — Federated
improvement while protecting privacy. However, several Wi server
obstacles remain: centralized storage increases the chance of Grawa  niggwtetmosn | €———
data leaks or misuse [5]; valuable data often stays isolated B Global Model
Al Qwaid, M. (2025). ADP-FL: Adaptive Differential Privacy Dﬂ_m — |
Federated Learning for Secure and Scalable Smart Healthcare. s P
Journal of Shaqra University for Computing and Information
Technology, 1(1), 13-21. Fig. 1. Federated learning system for smartwatches showing
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local model training and central aggregation adapted from
Advian

This research addresses these challenges by developing a
privacy-preserving federated learning system tailored for
smartwatches and health trackers. The approach aims to
handle diverse user data, ensure strong privacy with accurate
results, and operate efficiently on devices with limited
resources. Using real health datasets such as PhysioNet and
MIMIC-III [9][10], we propose an Adaptive Differential
Privacy Federated Learning (ADP-FL) algorithm that
dynamically adjusts privacy levels based on data
heterogeneity. The system is designed for real wearable
devices, tested against existing methods, and demonstrates
improved performance. Overall, this work provides practical
solutions that balance privacy protection with useful
healthcare outcomes, offering a deployable framework for
researchers and healthcare organizations. This project
addresses a critical need in modern healthcare by using
federated learning to enable collaborative machine learning
while preserving patient privacy and meeting regulatory
standards. The approach promises stronger privacy
protection, supports medical research, and helps healthcare
providers develop better diagnostic and treatment tools
without violating privacy laws. Researchers gain insights
from large-scale health data, and technology companies can
enhance wearable devices while maintaining user trust. The
paper is structured as follows: Section 2 reviews related
work; Section 3 introduces the ADP-FL algorithm and
system design; Section 4 details the experimental setup;
Section 5 presents performance metrics; Section 6 discusses
results; Section 7 outlines future work; and Section 8
concludes.

II. RELATED WORKS

The intersection of federated learning, privacy
preservation, and healthcare has attracted significant
attention. This section reviews related work and highlights
gaps addressed by the proposed approach. Federated learning
has emerged as a promising solution for healthcare, enabling
multi-institutional Al training without direct data sharing. Li
et al. [11] showed its potential despite new security and
privacy concerns, while Rieke et al. [12] surveyed healthcare
applications across medical domains, emphasizing its ability
to apply powerful machine learning without data pooling—a
critical advantage where privacy is essential. Several studies
have applied federated learning in medical settings,
particularly for image classification. Sheller et al. [13]
showed that multi-institutional AI research is possible
without sharing patient data, while Kaissis et al. [14]
emphasized privacy-preserving methods in medical imaging
and noted that over 30% of healthcare organizations have
faced data breaches. Xu et al. [15] demonstrated federated
approaches for EHR analysis, enabling hospitals to
collaborate on predictive modeling while keeping data local.
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However, most work targets traditional clinical
environments, with little focus on wearable devices.
Challenges unique to smartwatches and fitness trackers such
as limited resources, intermittent connectivity, and highly
personalized data—remain largely unaddressed. Privacy-
preserving machine learning is increasingly critical in
healthcare. Dwork and Roth [16] defined differential privacy
as the standard for formal privacy guarantees, while Chen et
al. [17] applied local differential privacy (LDP) to wearable
data streams using adaptive budget allocation. Wang et al.
[18] highlighted the challenges of applying differential
privacy to physiological data, and Acar et al. [19] explored
homomorphic  encryption and secure multi-party
computation, though these methods are often too
computationally heavy for wearables. Xu et al. [20] showed
that LDP is effective for ECG data when no trusted
aggregator exists, as noise is added before transmission.
Despite these advances, existing privacy-preserving methods
remain limited for wearable health data, particularly in non-
IID scenarios where assumptions of identical data
distribution rarely hold. Non-IID (non-independent and
identically distributed) data is a key challenge in federated
learning, especially in healthcare where patient populations,
medical conditions, demographics, and data collection vary.
McMahan et al. [21] introduced FedAvg, which struggles
with heterogeneous data, while Li et al. [22] proposed
FedProx and Karimireddy et al. [23] developed SCAFFOLD
to mitigate client drift. Personalization techniques, including
meta-learning, multi-task learning, and clustered federated
learning, have been explored by Jiang et al. [24], and domain
adaptation methods by Peng et al. [25] help align features
across clients. However, most solutions focus on accuracy,
overlooking privacy challenges in non-IID settings.
Meanwhile, wearable devices like smartwatches provide
continuous health monitoring. Cadmus-Bertram et al. [26]
showed that devices such as the Apple Watch track heart rate,
sleep, activity, and advanced metrics like blood oxygen and
ECG, generating rich physiological data.

Edge computing for wearables has been explored by Shi
et al. [27] to enable real-time health data processing on
resource-limited devices, reducing transmission needs and
improving responsiveness. Privacy concerns are significant:
Vogel et al. [28] highlighted risks from using personal health
data without consent, and Arachchige et al. [29] showed that
local differential privacy can protect wearable IoT data while
preserving some utility. Current research focuses on
individual device optimization and centralized processing,
with limited attention to a comprehensive framework that
addresses the unique challenges of smartwatch federated
learning—resource constraints, intermittent connectivity,
highly personalized data, and strong privacy requirements.

The analysis of existing work reveals several gaps that this
research  addresses. First, federated learning for
smartwatches and personal health devices remains
underexplored, requiring approaches tailored to their
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constraints. Second, current differential privacy methods
degrade significantly with non-IID data, common in personal
health monitoring, limiting both privacy and model utility.
Third, secure aggregation protocols are not optimized for the
limited computational and energy resources of wearables.
Fourth, no unified framework simultaneously handles
differential privacy, secure aggregation, and non-IID data in
smartwatch federated learning. Finally, most studies rely on
simulations, with limited validation on real wearable
datasets. The proposed ADP-FL framework addresses these
gaps by providing adaptive differential privacy, efficient
secure aggregation, and robust handling of heterogeneous
data, offering a comprehensive solution for privacy-
preserving federated learning on resource-constrained
devices (Fig. 2).

- MAPPING RESEARCH -

GAPS TO THE PROPOSED SOLUTIONS IN SMARTWATCH
FEDERATED LEARNING

Problem (Solution
Most studies focus on hospitals, Design the system specifically for
not wearables smartwatches and trackers
Differential privacy breaks down Adaptive Differential Privacy
with non-1ID data handles personalized data

Lightweight, efficient algorithms
for low-power devices

Secure aggregation not optimized Efficient secure aggregation tailored
for wearables for resource-constrained settings
No system handles all 3 challenges Unified framework combining privacy, non-
together 11D handling, and efficiency
Most research uses simulated data
like PhysioNet and MIMIC-11I

- J
Fig. 2. Mapping key research gaps in smartwatch federated

learning to the corresponding solutions proposed in the ADP-FL
framework

Current methods too heavy
for wearable devices

e No data Exchange

O pata @ Model

Fig. 3 System architecture of federated learning

III. METHODS AND MATERIALS

This study develops a privacy-preserving federated
learning system for smart healthcare devices, including
smartwatches, fitness trackers, and heart rate monitors. The
primary goal is to enable collaborative machine learning
across devices to improve diagnostics and health monitoring
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without exposing sensitive personal data. Traditional
methods require centralizing all data, creating privacy and
regulatory risks under laws like HIPAA and GDPR. In the
proposed framework, each device trains a local model using
only its user’s data and shares only model parameters, not
raw health measurements, ensuring complete privacy while
enabling collective learning (Fig. 3).

The approach employs differential privacy, adding
carefully calibrated noise to shared model parameters to
prevent identification of individual patients while still
learning useful health patterns. Noise levels are controlled to
balance strong privacy with model accuracy. The system
architecture features multiple protection layers: at the device
level, each smartwatch or fitness tracker runs a lightweight
machine learning algorithm optimized for wearable data
such as heart rate, sleep quality, activity levels, and vital
signs while respecting computing and battery constraints.
The federated learning process runs in structured
communication rounds to minimize battery and bandwidth
usage. In each round, a subset of devices downloads the
global model, performs local training with their user’s recent
health data, and applies differential privacy to the updates
before sharing. Secure aggregation ensures that only the
combined model is visible, using cryptographic masks to
hide individual contributions. To handle non-IID data,
adaptive algorithms account for variations across users and
device types, ensuring the global model effectively captures
diverse health patterns.

The system handles various health data types continuous
(e.g., heart rate, blood pressure), discrete (e.g., medication
intake, symptom events), and periodic assessments (e.g.,
sleep quality, mood)—with tailored privacy mechanisms and
learning algorithms. Quality control ensures high model
accuracy by detecting corrupted data, malfunctioning
devices, and preventing malicious attacks. The framework
supports dynamic participation, allowing devices to join or
leave the network based on user preferences, battery,
connectivity, and data availability, ensuring flexibility for
real-world deployment. The ADP-FL (Adaptive Different
purify Private Federated Learning) algorithm dynamically
configures data distributions, contributions and reliabilities
based on the model updates and noises. It leverages adaptive
weighting to process non-IID health data and guarantees fair
representation for all users with strong privacy protection.
By combining differential privacy with secure aggregation,
ADP-FL reduces the information leakage; accelerates the
model convergence and fits for device variations about
battery life, connectivity state and computation capacity to
makes the efficient, accurate and privacy-preserving learning
feasible on MDs.

IV. DATASET

This study uses healthcare datasets to develop and
evaluate the privacy-preserving federated learning system.
Primary sources include the PhysioNet and MIMIC-III
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databases, containing extensive patient records and
physiological measurements similar to those collected by
wearable devices, such as heart rate, blood pressure, sleep
patterns, physical activity, and other vital signs. PhysioNet
provides over 80,000 patient records from various clinical
settings over 20+ years, including ECG, PPG, and
accelerometer data. The MIT-BIH Arrhythmia Database
within PhysioNet offers 48 high-quality ECG recordings
from 47 patients, with detailed annotations of heart rhythm
abnormalities, representing a diverse population (ages 23—
89, 60% male, 40% female) for testing federated learning
algorithms [30].

The MIMIC-III database complements PhysioNet by
providing clinical data such as vital signs, lab results,
medication records, and clinical notes from over 46,000 ICU
patients treated between 2001-2012, totaling millions of
measurements. To create realistic testing scenarios for
wearable data, we implemented preprocessing and
partitioning strategies that reflect continuous data collection,
individual baseline differences, and daily variability. Four
data heterogeneity scenarios were simulated. The first, a
uniform distribution, assigned 500-600 patient records per
device with similar demographics and health conditions,
serving as a baseline. The second scenario introduced mild
heterogeneity using a Dirichlet a=10 distribution, with 400—
700 records per device and ~60% overlap, simulating slight
variations among similar users. The third scenario
represented moderate heterogeneity (a=1), with 200-800
records per device and 30% overlap, reflecting real-world
diversity in activity, health, and usage. The fourth and most
challenging scenario simulated severe heterogeneity, with
highly specialized devices containing 100-900 records and
only 10% overlap, testing the system’s ability to learn from
vastly different data distributions. Fig. 4 illustrates how
decreasing Dirichlet o values increase variability and
imbalance across devices, highlighting the impact of data
heterogeneity on federated learning performance.

Data Distribution Across Devices in Different Heterogeneity Scenarios

900

<]
S

|

2
=

==

230 I

100

&
3

<
S

Number of Patient Records per Device
3

Uniform (a==) Mild (a=10) Wodsrate [@=1) Severe (2=01)
Fig. 4 Distribution of patient records per device under four
simulated data heterogeneity scenarios using Dirichlet
partitioning (o values). As o decreases, data becomes more
non-1ID, resulting in increased variation in local dataset

sizes across devices
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Table 1: Comprehensive Dataset Statistics

Data Source Total Unique Male Female Age Data Types Collection
Records Patients Patients Patients Range Period
PhysioNet MIT- 48 47 28 19 23-89 ECG, 1975-
IBIH records patients (60%) (40%) years Annotations1979
PhysioNet 67,830 30,500 18,300 12,200 16-95 ECG, PPG, 2001-
MIMIC-III records patients (60%) (40%) years Blood 2012
'Waveforms Pressure
MIMIC-III 4,156,45046,520 25,000 21,520 18-  Vital Signs, 2001-
Clinical records patients (54%) (46%) 100+ Labs, 2012

year  Medications
|Accelerometer 15,000 500 280 220 20-75 3-axis 2018-
Data records patients (56%) (44%) year Motion, 2020
Activity
ICombined Total 4,239,32877,067 43,608 33,459 16-  Multi- 1975-
(57%) (43%) 100+ modal 2020

The data preprocessing pipeline was designed to simulate
the type of processing that would occur on actual wearable
devices while maintaining privacy throughout the process.
Raw physiological signals undergo noise reduction to
remove artifacts caused by device movement, electrical
interference, and other sources of measurement error [31].
Feature extraction algorithms identify relevant patterns in the
physiological signals, such as heart rate variability measures,
sleep stage indicators, and activity intensity levels. Privacy-
preserving data normalization ensures that sensitive
information about individual baseline health measurements
cannot be inferred from the processed data. Instead of using
global statistics for normalization, each device computes
local statistics with differential privacy protection, ensuring
that the normalization process itself does not leak
information about individual users. Table 2 shows the
detailed breakdown of data types and their characteristics
across different healthcare monitoring categories.

Table 2: Healthcare Data Types and Characteristics

Measurement Frequency Typical Pr / Clinical

Type Range Sensitivity Importance

Cardiac Heart Rate Continuous 40-200 bpm High Critical

Monitoring

Cardiac Heart Rate Every 5 10-300 ms  Very High High

Monitoring  Variability minutes

Blood Systolic/Diastolic Every 15 80-200 Very High Critical

Pressure minutes mmHg

|Activity Steps per Day ~ Daily 0-50,000 Medium  Moderate

Tracking steps

|Activity Calories Burned Daily 1200-4000 Medium  Moderate

Tracking kcal

Sleep Sleep stages Throughout REM, Deep, High High

Monitoring the night Light

Sleep Sleep Duration ~ Nightly 4-12 hours  High High

Monitoring

Respiratory Breathing Rate  Continuous 8-30 High High
breaths/min

Temperature Body Every hour 96-102°F  High High
Temperature

Medication Dosage Timing As needed Variable Very High Critical

The dataset also includes synthetic data generated to
supplement real patient records and test edge cases not well
represented in historical clinical databases. Generative
models, trained on real datasets, produced synthetic records
with additional differential privacy to prevent revealing
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information about actual patients. Healthcare professionals
validated the combined dataset to ensure realism and clinical
relevance by reviewing statistical distributions, correlations
among health measurements, and the progression of
conditions over time.

V. EXPERIMENTAL SETUP

The experimental setup was designed to evaluate the
privacy-preserving federated learning system under realistic
conditions resembling real-world wearable healthcare
deployments. It simulates technical and practical challenges
across thousands of smartwatches, fitness trackers, and other
health monitors. The architecture includes simulated client
devices, edge computing servers, and central coordination
servers. Each client device mirrors real wearable
specifications, with 4GB RAM, ARM Cortex-A78
equivalent processing, and battery constraints to realistically
limit participation in federated learning rounds.

The network simulation replicates real-world connectivity
conditions for wearable devices, including high-quality
WiFi, variable cellular connections, and intermittent
coverage, with random assignment of network conditions to
test system adaptability. Edge servers represent intermediate
healthcare network resources, equipped with AMD EPYC
processors and 64GB RAM to handle aggregation and
coordination tasks. The central coordination server manages
global model updates and communication across networks,
using high-performance Intel Xeon processors and 128GB
RAM to support thousands of simulated devices [32].

Table 3: Detailed Experimental System Configuration

RAM Storage Network Power Purpose

Typ Simulation
Client 1000 ARM 4GB 128GB WiFi/CellularBattery =~ Wearable

Devices Cortex- limited  simulation
A78
Edge 10 AMD  64GB 2TB  Gigabit Always on Regional
Servers EPYC SSD  Ethernet aggregation
7542
Central 1 Intel 128GB10TB 10 Gigabit  Always on Global
Server Xeon SSD coordination
Gold
6248
Network 1 Intel i9- 32GB 1TB  Virtual Always on Connectivity|
Simulator 12900k SSD  networks simulation
Monitoring 1 Intel i7- 16GB 500GB Monitoring Always on Performance
System 12700k SSD  network tracking

The software environment uses specialized frameworks
for federated learning and differential privacy. TensorFlow
Federated 0.20.0 implements the federated learning
algorithms, while Opacus 1.4.0 provides differential privacy
mechanisms integrated with the models. Privacy parameters
are carefully configured: the differential privacy budget
(epsilon) varies from 1.0 to 8.0, balancing privacy and model
accuracy, and delta is set to le-5 for high-confidence
guarantees. The system runs 200 communication rounds,
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sufficient for convergence. Local training on client devices
is adaptive, with 3—-10 epochs depending on data size,
computational power, and battery status.

Table 4: Comprehensive Training Configuration Parameters

Parameter ~ Parameter Value Default Adaptation Impacton Impact or

Category Name Range Value Strategy Privacy Accuracy
Privacy Epsilon (g) 1.0-8.0 4.0 Adaptive Higher=  Higher =
Protection based on data less private more
sensitivity accurate
Privacy Delta (3) le-6to le-5  Fixed Lower=  Minimal
[Protection le-4 conservative more impact
value private
Privacy Noise 0.5-2.0 1.0 Based on Higher=  Higher =
Protection Multiplier epsilon and more less
dataset size  private accurate
Training Communication50-300 200 Until More More
Process Rounds convergence rounds =  rounds =
more better
exposure accuracy
Training Local Epochs 3-10 5 Device More More
Process capability ~ epochs = epochs =
adaptive more better local

computationlearning
Training Batch Size 16-64 32 Memory and Larger Larger

IProcess data size batches = batches =
adaptive less noise  more stable
impact training
OptimizationLearning Rate 0.001- 0.005 Adaptive No direct  Critical for
0.01 decay impact convergence|
schedule
OptimizationGradient 0.5-2.0 1.0 Based on Essential ~ Prevents
Clipping gradient for DP gradient
norms explosion

The experimental protocol evaluates system performance
under realistic conditions, including normal operation,
degraded network connectivity, device failures, and
adversarial attacks. Battery simulation models how power
constraints affect device participation, with devices reducing
training activity as battery depletes. Data distribution
scenarios range from uniform to highly skewed, testing the
system’s ability to handle different levels of heterogeneity.
Comprehensive  monitoring tracks privacy  budget
consumption, model accuracy, communication overhead,
computational usage, and Dbattery patterns without
compromising privacy. Baseline comparisons include
standard federated learning, centralized learning, and basic
differential privacy without secure aggregation, all tested
under the same hardware and network conditions.

VI. PERFORMANCE MATRIX

Evaluating the privacy-preserving federated learning
system requires metrics that assess machine learning
performance alongside privacy, security, and deployment
considerations. Privacy protection is paramount, measured
using complementary metrics to assess resistance against
potential attacks. The differential privacy budget (epsilon)
quantifies cumulative privacy cost, with lower values
indicating stronger protection; values between 1.0-8.0 are
suitable, with below 4.0 providing strong privacy. Privacy
attack resistance is tested against threats such as membership
inference attacks, which attempt to determine if a specific
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patient’s data was included; the system aims to limit attack
success to near-random guessing (~50%).

Attribute inference attacks try to determine sensitive health
information about patients based on partial knowledge and
access to the trained model. For healthcare applications, it is
crucial that attackers cannot reliably infer sensitive attributes
such as specific medical conditions, medication usage, or
demographic information from model outputs. The target is
to limit attribute inference accuracy to less than 10% above
random guessing for sensitive health attributes. Property
inference attacks attempt to determine statistical properties
of the training dataset, such as the prevalence of certain
health conditions or demographic distributions. While some
statistical information must be preserved for the model to be
useful, the privacy protection mechanisms should prevent
inference of detailed statistical properties that could
compromise patient privacy.

Table 5: Privacy Protection Evaluation Metrics

Privacy MetricDescription Measurement Target

Method Value
Privacy Cumulative Differential 1.0-8.0 Lower = All inference
Budget (g) privacy cost privacy theory stronger attacks
protection

Membership Success rate Adversarial =~ <55% Prevents Membership
Inference of testing patient inference
|Accuracy membership identification

attacks
|Attribute Success rate Targeted <Random Protects Attribute
Inference of attribute inference +10%  sensitive inference
|Accuracy attacks testing health data
Property Success rate Statistical <Random Protects Property
Inference of property analysis + 5% population  inference
|Accuracy attacks attacks statistics
Model Ability to  Reconstruction<1% Prevents data Model inversion
Inversion reconstruct attacks reconstruction
Success training data
Privacy Loss Rate of Budget ControlledSustainable Budget
Rate privacy tracking over decay long-term  exhaustion

budget time operation

consumption

Model accuracy and clinical utility metrics evaluate
whether the privacy-preserving system maintains predictive
performance for healthcare applications. Classification
accuracy targets above 85% to ensure clinical usefulness,
with thresholds adjusted for critical versus general
applications. Precision and recall provide further insights,
especially for imbalanced datasets, with high recall
prioritized to avoid missing serious health conditions.

The AUC-ROC metric evaluates the model’s ability to
distinguish between different health conditions across
decision thresholds, with values above 0.85 indicating good
and above 0.90 indicating excellent performance. Clinical
relevance metrics assess whether the model’s predictions
align with established medical knowledge, identify known
risk factors, respond appropriately to patient health changes,
and provide actionable insights consistent with clinical
guidelines.
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Table 6: Model Performance and Clinical Utility Metrics

Performance C: ation o Clinical Importance Me

Metric Method Value Application Level Frequency

Overall Correct >85% General High Every

|Accuracy predictions / health communication
Total predictions monitoring round

Precision True positives / >80% Disease Very High Per health

(Positive (True positives + detection condition

Predictive  False

\Value)

Recall True positives /  >90% Critical Critical ~ Per health

(Sensitivity) (True positives + condition condition
False negatives) screening

Specificity ~ True negatives / >85% Avoiding  High Per health
(True negatives + false alarms condition
False positives)

IF1-Score 2 x (Precision x >85% Balanced  High Per health
Recall) / performance condition
(Precision +
Recall)

JAUC-ROC  Area under ROC >0.85 Risk Very High Per prediction
curve stratification task

Calibration Reliability of ~ <10% Treatment High Across

[Error probability decision probability
predictions support ranges

System efficiency and deployment metrics evaluate
performance under real-world constraints, including limited
computational resources, battery life, network bandwidth,
and intermittent connectivity. Communication efficiency
measures data transmission volume and frequency, aiming to
minimize overhead while preserving model performance and
privacy. Computational efficiency assesses local training
time, memory usage, and the impact of privacy mechanisms,
ensuring practicality for deployment on actual smartwatches
and fitness trackers.

Battery consumption analysis evaluates the impact of
federated learning on device battery life, critical for user
acceptance. Scalability metrics assess performance as device
numbers increase, including communication, coordination,
and model quality. Robustness metrics measure system
reliability under dropouts, network outages, and malicious
participants [Table 7].

Table 7: System Efficiency and Deployment Metrics

Target Measurement Impact on  Optimizatio
S Values Units Deployment n Pr
Communicatio Data per round <IMB perBytes Network  High
n Efficiency device transmitted costs
Communicatio Communicatio <10 roundsRounds perBattery High
n Efficiency  n frequency  perday  time period  usage
Computational Training timeTraining Time per localUser Medium
Efficiency per epoch time  perupdate experience
epoch
Computational Memory usage <2GB peakRAM Device High
[Efficiency consumption  compatibilit
y
Battery Impact Additional <5% dailyPercentage User Very High
power battery battery drain  acceptance
consumption
Scalability Performance Linear Performance Network ~ Medium
with devicedegradatio vs. participants deployment
count n
IRobustness Performance  <10% Accuracy System High
with dropouts accuracy reduction reliability
loss
IConvergence Rounds to<150 Communicatio Time toMedium
Speed target accuracy rounds n rounds deployment
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The evaluation framework also considers long-term
sustainability, assessing privacy budget maintenance over
extended operation, detecting model drift, and measuring
adaptation to new health data or device capabilities. Quality
assurance metrics ensure continuous high standards by
monitoring corrupted data, malfunctioning devices, security
breaches, and regulatory compliance. Continuous logging
and analysis track performance trends, enabling early
detection of potential issues and supporting the long-term
viability of privacy-preserving federated learning for
healthcare applications.

VII. RESULTS AND DISCUSSION

The privacy-preserving federated learning system was
evaluated across multiple scenarios, demonstrating effective
collaborative learning while maintaining patient privacy.
Differential privacy-maintained epsilon values between 1.2
and 6.8, with strong protection below 4.0. Membership
inference attacks were limited to near-random success (51.2—
53.8%), attribute inference attacks achieved only 8.3—12.1%
above random guessing, and property inference attacks
remained below 7%, showing robust protection of individual
and population-level health data (Fig. 5a—5b).

Table 8: Privacy Protection Metrics

Privacy Metric Range/Value Performance Indicator

Differential Privacy (g) 1.2-6.8 Strong protection (g < 4.0 for
healthcare)

Membership Inference Attack  51.2% - 53.8% Near-random performance (robust

Success protection)

Attribute Inference Attack 8.3% -12.1% Above random guessing (strong

|Accuracy resistance)

Property Inference Attack <7% Above random baseline (effective

|Accuracy protection)

Model accuracy results exceeded clinical utility thresholds
across all healthcare tasks. The federated learning system
achieved 87.3-92.1% accuracy for cardiac arrhythmia
detection, 89.7% for heart rate variability analysis, and
85.4% for sleep pattern classification, showing that privacy
mechanisms minimally impact clinical utility. Precision
ranged from 82.1% to 91.3%, recall from 85.7% to 93.2%,
and AUC-ROC consistently exceeded 0.87, reaching 0.91—
0.94 for cardiac monitoring tasks (Fig. 5¢—5d).

Table 9: Model Accuracy and Performance Metrics

Healthcare Federated  Centralized  Precision  Recall
Application Learning Learning Range Range
Accuracy  Accuracy
Cardiac 82.1% -
Arrhythmia 92.1% 91.3% - 0.94
Detection 93.2%
Heart Rate 89.7% - 82.1% - 85.7%  >0.87
Variability 91.3% -
Analysis 93.2%
Sleep Pattern 85.4% - 82.1% - 85.7% >0.87
Classification 91.3% -
93.2%
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Communication efficiency analysis showed that network
overhead was minimized, with average data per device per
round at 0.8 MB, below the 1 MB target. The system
converged in 165 rounds, fewer than the 180-200 rounds of
baseline methods. Computational efficiency on simulated
wearables was practical, with local training completing in
18-28 seconds and memory usage peaking at 1.6 GB.
Battery consumption increased by only 3.2% per day, within
acceptable limits for continuous operation.

Table 10: System Efficiency Metrics

Efficiency Metric Measured  Target/Baseline Performance Value

Value
Communication per Device 0.8 MB
er Round
Communication Rounds to 165 rounds  180-200 baseline v Improved
Convergence

<1MB target ¢ Target Met

ILocal Training Time 18-28 seconds - Acceptable

Memory Usage Peak 1.6 GB - Practical for
deployment

/Additional Battery Drain 3.2% Acceptable V Within Limits

limits

Scalability testing with up to 5,000 simulated devices
showed linear performance degradation, with accuracy
dropping less than 2% as participants increased from 100 to
5,000. The system remained stable even with 30% device
dropouts, demonstrating robust operation under realistic
conditions. Data heterogeneity tests indicated effective
handling of varying distributions, with accuracy decreasing
only 1.8% under mild heterogeneity and within 6.2% under
severe heterogeneity. Automated quality control detected
94.7% of corrupted data and 97.3% of device malfunctions,
while attack detection identified 89.2% of simulated
malicious participants. Long-term sustainability analysis
over 12 months showed that privacy budgets could be
maintained via adaptive management, ensuring continued
protection while extending operational lifetime.

Table 11: Scalability and Robustness Results

Test Scenario Confirmation Performance Success Rate

Impact

Device Scalability 100 — 5,000 devices < 2% accuracy  Linear

drop degradation
Device Dropout 30% dropout rate Stable performance/ Robust
Resilience maintained
Data Heterogeneity Minimal overlap 6.2% accuracy  Within
(Severe) drop acceptable range
Data Corruption Automated QC - 94.7% detection
Detection
Device Malfunction Automated QC - 97.3% detection
Detection
Malicious Participant Attack simulation - 89.2% detection
Detection
ILong-term Sustainability 12-month simulation Privacy budget v Adaptive

maintained management
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Fig. 5. Evaluation results of the proposed privacy-preserving
federated learning system across multiple healthcare application
scenarios. (a) Differential privacy epsilon values across
experiments, indicating effective privacy budgeting. (b) Resistance
to membership, attribute, and property inference attacks, all near or
below random guessing baselines. (c) Accuracy of healthcare
models such as arrhythmia detection, HRV analysis, and sleep
classification. (d) Precision, recall, and AUC-ROC metrics across
classification tasks. € Communication and computational
efficiency, showing feasibility for wearable devices. (f) Scalability
and robustness under increased device count and dropout scenarios.

Prior research has validated these results with respect to
instances of privacy-preserving federated learning in healthcare.
Pati et al. demonstrated differential privacy to protect sensitive
health data while preserving model utility [33], and Chen et al.
reported near-random success of membership inference attacks on
federated learning models, which substantiate that secure
aggregation and privacy mechanisms are effective in preserving
patient information [34].

VIII. FUTURE WORK

Future research should focus on optimizing privacy-
preserving federated learning for wearable healthcare
devices, ensuring efficiency, robustness, and long-term
sustainability. Key directions include validating systems
with real patients and institutions, supporting rare disease
and longitudinal studies, enhancing security against attacks,
developing cross-institutional protocols, integrating edge
computing, and enabling continuous model adaptation.
Standardized evaluation frameworks and datasets will
facilitate fair comparisons and practical adoption.
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IX. CONCLUSION

This study shows that privacy-preserving federated
learning enables collaborative healthcare Al while protecting
patient data. The system maintains high accuracy, handles
heterogeneous wearable device data, and is robust to
connectivity issues and malicious activity. Low
communication and battery overhead make it practical for
real-world deployment, and adaptive privacy management
ensures long-term sustainability. This study demonstrates
that privacy-preserving federated learning is a practical
approach for enabling collaborative healthcare Al without
compromising patient privacy. By combining differential
privacy guarantees with wearable-device optimizations, the
system supports scalable, real-world deployment. The
findings highlight the potential of distributed health data to
advance medical research, improve diagnostics, and enable
personalized treatments, while future work should focus on
multi-modal integration, rare disease applications, and cross-
institutional collaboration under standardized protocols.
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Abstract This study explores Genetic Algorithms (GAs) in depth. It highlights their growing impact as powerful optimization
tools in various scientific domains. Emphasis is placed on their application in resolving Bluetooth channel interference, an
increasingly critical issue due to the rapid proliferation of wireless devices. Inspired by the principles of natural evolution, the
pro-posed GA approach optimizes channel allocation by iteratively refining solutions through selection, crossover, and mutation
operations. The experimental evaluation reveals notable improvements in network performance, including reduced channel
interference, lower packet loss, and enhanced energy efficiency. In addition to the practical contributions, this paper provides a
comprehensive review of GA design principles, advantages, limitations, and emerging research directions. The findings
demonstrate the potential of GAs in delivering scalable, adaptive solutions for dynamic spectrum management in modern

wireless communication systems.

Index Terms— Metaheuristic; Genetic algorithm; Optimization; Bluetooth interference.

I. INTRODUCTION

Genetic  algorithms have been widely wused in
optimization problems [1, 2]. Genetic Algorithms (GAs)
represent a powerful class of metaheuristic optimization
techniques, inspired by the evolutionary concepts of natural
selection and survival of the fittest [1, 3]. First introduced
by John Holland in the 1970s [3], GAs emulates the
mechanisms of biological evolution namely selection,
crossover, and mutation to evolve a population of candidate
solutions toward optimal or near-optimal outcomes [4, 5,
6]. Each candidate solution, encoded as a chromosome
composed of individual genes, is assessed using a fitness
function that guides the algorithm’s iterative refinement
process [4, 5]. Grounded in Darwinian evolutionary theory,
GAs draw on nature’s capacity to improve populations over
successive generations [1, 3]. This biologically inspired
strategy has been successfully translated into computational
models that can address complex and large-scale problems
where traditional deterministic methods often fail [7, 8, 9].
Today, GAs is widely used in diverse fields such as
artificial intelligence, scheduling, robotics, engineering
design, and data analysis [5, 10, 11]. The strength of GAs
lies in their population-based nature, which enables broad
exploration of the solution space and helps avoid
entrapment in local optima a common limitation in single-
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solution methods like Simulated Annealing and Tabu
Search [1, 6]. By maintaining genetic diversity through
mutation and recombination, GAs ensures continued
exploration and adaptability throughout the optimization
process [4, 12].

This paper applies a GA-based solution to a prominent
issue in wireless communications: Bluetooth channel
interference [13, 14]. As the number of Bluetooth-enabled
devices continues to rise, the finite set of available channels
leads to significant signal overlap, resulting in degraded
connection quality, increased latency, and higher energy
consumption due to repeated data transmissions [13, 14].
To address this, we propose an intelligent GA-driven
approach to optimize channel allocation and minimize
interference [15—18]. The process begins by generating an
initial population of random channel assignments. Each
assignment is evaluated based on the level of interference it
produces [13, 14]. Through successive generations, the
algorithm  selects  high-performing  configurations,
recombines their features via crossover, and introduces
occasional mutations to explore new possibilities [4, 5, 12].
This evolutionary cycle continues until an optimized
channel distribution is achieved [12, 19]. Experimental
results demonstrate that GA significantly reduces channel
interference. It also enhances signal stability, lowers packet
loss, and improves energy efficiency [13, 15, 17, 18]. These
findings affirm the potential of Genetic Algorithms as a
scalable, adaptive solution for dynamic spectrum
management in modern Bluetooth networks. Moreover, this
study showcases the broader applicability of GAs in solving
complex, constraint-sensitive problems in real-world
systems [7, 15, 17].
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II. RELATED WORKS

Several previous studies have examined interference
issues in wireless communication channels, particularly in
networks operating within the 2.4 GHz frequency band,
such as Wi-Fi and Bluetooth. Traditional solutions like
static frequency allocation or frequency hopping have often
been employed, but these methods have shown significant
limitations in complex or densely populated environments.
For example, interference from Wi-Fi severely impacts
Bluetooth and ZigBee, reducing Bluetooth performance by
up to 41.29% [5]. Similarly, improved coexistence of Wi-Fi
and Bluetooth using optimized chaotic frequency hopping
effectively ~minimizes interference and  improves
connectivity [4]. Recently, genetic algorithms (GAs) have
emerged as effective tools for optimizing channel allocation
and reducing interference in Wi-Fi and cellular networks
[15— 18]. Nevertheless, their application to Bluetooth
networks remains relatively unexplored, representing a
crucial research gap. This study aims to fill this gap by
applying a GA directly to Bluetooth networks to enhance
channel allocation, reduce interference, and improve
communication quality in a flexible and adaptive manner
that responds to changes in the wireless environment.

Recent research has applied a variety of metaheuristic
techniques to spectrum and channel-allocation problems in
wireless systems [15-18]. Particle Swarm Optimization
(PSO) and Ant Colony Optimization (ACO) have been used
successfully for overlapping-channel allocation and
interference-aware resource assignment in wireless and IoT
networks [16, 17], showing competitive performance with
respect to convergence speed and solution quality. For
example, discrete-PSO methods were proposed for
overlapping channel allocation to reduce inter-channel
interference and improve fairness in 2.4 GHz networks
[16]. Similarly, ACO-based approaches have been applied
to load balancing and interference-aware optimization in
next-generation wireless systems [17]. Metaheuristics have
also been adapted specifically for mesh/router placement
and energy-efficiency optimization in wireless mesh
networks using genetic-algorithm variants [18]. These
efforts demonstrate that different metaheuristics can be
effective for spectrum-management problems and motivate
a focused study of genetic algorithms for Bluetooth channel
allocation, which compared with PSO or ACO offers
flexible chromosome encodings and rich
crossover/mutation operators suitable for discrete channel
assignments [4, 17].

III. METHODOLOGY

A. Genetic Algorithm Design
1) Chromosome Representation
In genetic algorithms, each potential solution (individual) is
represented as a chromosome. The type of representation
depends on the nature of the problem [1, 4].
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Binary Encoding: This is the most common form of
encoding. In this encoding, each chromosome is
represented using a binary string. In binary encoding, every
chromosome is a string of bits, 0 or 1 [4, 5]. Figure 1 shows
the hexadecimal encoding.

Chromosomel | 110101110010

Chromosome2 | 011010011101

Fig 1. Binary Encoding

In this encoding, each bit shows some characteristics of
the solution. On the other hand, each binary string
represents a value. With a smaller number of alleles, several
chromosomes can be represented. Crossover operations
possible in binary encoding are 1-point crossover, N-point
crossover, Uniform crossover, and Arithmetic crossover.
The Mutation operator possible is Flip. In Flip mutation,
bits change from 0 to 1 and 1 to 0 based on the generated
mutation chromosome [4, 5]. This is generally used in the
Knapsack problem, where binary encoding is used to show
the presence of items say 1 to denote the presence of an
item and 0 to denote its absence [5].

Real-Valued Encoding: In value encoding, each
chromosome is represented as a string of some value. The
value can be an integer, real number, character, or object. In
the case of integer values, the crossover operators applied
are the same as those applied in binary encoding [4, 6].
Values can be anything connected to the problem, from
numbers, real numbers, or characters to more complex
objects. Figure 2 shows the value encoding [5].

Chromosomel | 1.23,2.12,3.14,0.34,4.62
Chromosome2 | ABDJEIFJDHDDLDFLFEGT
Fig 2. Value Encoding

Value Encoding can be used in neural networks. This
encoding is generally use in finding weights for neural
network. Chromosome's value represents corresponding
weights for inputs.

Rule-Based Encoding: Utilized for problems requiring
complex representations, such as neural network design.
This encoding method allows genetic algorithms to evolve a
set of structured rules that define decision-making
processes, making it particularly useful in expert systems,
fuzzy logic controllers, and reinforcement learning
applications. It enhances interpretability and adaptability by
ensuring that solutions are not just optimized numerically
but also follow predefined logical constraints.
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2) Fitness Function
The fitness function is a key element in Genetic Algorithms
(GAs), used to evaluate the quality of each potential
solution (chromosome) and determine its suitability for
solving the given problem [1, 4]. This function depends on
the nature of the problem and is designed to reflect how
well the chromosome meets the desired objectives [4].

How the fitness function works:

+ Evaluating solutions: The fitness function calculates a
numerical value for each chromosome, representing the
quality of the proposed solution. The higher this value, the
better the solution [1, 4].

+ Selection mechanism: Fitness values are used in the
selection process, where chromosomes with higher values
are chosen for crossover to produce the next generation,
increasing the likelihood of good traits being passed on to
future generations [4, 14].

Examples functions in different
applications:

* In classification problems: The classification accuracy is
measured based on the ratio of correctly classified samples
to the total number of samples.

* In route optimization (e.g., Traveling Salesman Problem -
TSP): The total distance traveled is calculated, and the
shortest path is preferred [7].

* In neural network design: The fitness function is used to
measure the prediction error rate, aiming to minimize this
error as much as possible [4, 5].

of using fitness

Fitness Function Normalization and Interpretation:

In this study, the fitness function was normalized to the
range [0, 1], where O represents the best possible outcome
(minimal interference) and 1 represents the worst
(maximum interference) [1, 4]. For each candidate channel
allocation, an interference score (I) was calculated as the
number of Bluetooth device pairs sharing the same or
adjacent channels, weighted by their signal strength and
distance [4, 15, 18]. The normalized fitness value was then
computed using the following equation:

I -
F= min

Imﬂ.x - Imin

where fminand fmaxrepresent the minimum and maximum
interference values observed across all generations. In this
context, fmincorresponds to the optimized interference
level after the algorithm converges, while Tmaxcorresponds
to the initial interference level before optimization [4, 15].

Therefore, when the results indicate that the final fitness
value was close to 0, it means that the optimized channel
allocation achieved near-minimal interference and that the
Genetic Algorithm effectively reduced signal overlap
between Bluetooth devices. In our experimental evaluation,
the final normalized fitness value reached 0.07 after 200
generations, confirming that the proposed Genetic
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Algorithm  successfully minimized interference and
converged toward an optimal or near-optimal channel
distribution. This interpretation provides a quantitative
understanding of how the algorithm’s performance
improves over generations and validates the observed
enhancement in network metrics such as the 83% reduction
in interfering channels and the 80% decrease in packet loss
presented in Table 2.

3) Genetic Operations

1. Selection: Chromosomes with higher fitness are selected
for crossover to produce the next generation. Common
selection methods include:

* Roulette wheel selection: Also known as fitness
proportionate selection, is based on selecting individuals
according to their fitness. The higher an individual’s fitness,
the larger their “slice” on the roulette wheel [1, 4]. A
random number is generated to select the individual whose
range matches the generated number. However, one
drawback of this method is that it may lead to premature
convergence to a local optimum due to the dominance of
individuals with low fitness over better solutions [1, 4].

Roulette Ant Wheel Selection (RAWS) is an improvement
over the traditional Roulette Wheel Selection method. It
incorporates Inner Cyclic Ants (ICA) and Outer Cyclic
Ants (OCA) to enhance the selection process. This
algorithm combines randomness with a focus on selecting
the best parents from the population, improving the
effectiveness of choosing good individuals [14]. Roulette
wheel has chromosomes sequentially arranged as the
numbers in the roulette game, as shown in Figure 3. The
inner circle of the wheel has to be filled with Inner Cyclic
Ants (ICA), and the outer circle of the wheel has to be filled

Fig 3. Roulette Ant Wheel

with Outer Cyclic Ants (OCA), both of which traverse the
chromosomes [14]. In the proposed algorithm, Roulette
wheel is not rotated but the ants (ICA and OCA) used
traversed the wheel through clockwise and anticlockwise
directions respectively. The chromosome of the population
in the wheel is also represented by its fitness value
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calculated by the fitness function described in previous
section.

* Tournament Selection: A random group of individuals is
chosen, and the best among them is selected.

2. Crossover: Crossover: Genes from two parents are
combined to produce a new offspring [1, 4].

Types of crossovers:

 Single-Point Crossover: A single point is selected along
the chromosome, and the chromosome is split at this point
to exchange parts between the parents [1, 4].

* Multi-Point Crossover: Multiple points are selected along
the chromosome to divide it and exchange parts between
the parents [1, 4].

¢ Uniform Crossover: Genes are exchanged randomly
between parents at all positions, so each gene from the
father can come from either parent [4].

* Reverse Crossover: Parts are exchanged between parents
in a reversed or opposite manner [4].

* Blending Crossover: Genes are blended in a way that
combines the good traits of both parents into the offspring
[11].

* Multi-Parent Crossover: More than two parents are used
to creating the offspring, with genes taken from multiple
sources [11].

* Generational Crossover: It combines both old and new
generations over several generations [4].

* Tree-Based Crossover: This type is used for crossover in
tree-based representations (like neural networks), where
parts of the tree are exchanged between the parents.

* Partial Crossover: Specific parts of one parent’s
chromosome are selected and combined with the other
parent’s chromosome [4].

* Mutation: Random changes are introduced in some genes
of the chromosome to maintain genetic diversity and avoid
getting stuck in local optima.

4) Hyper-parameters
Hyper-parameters in  genetic  algorithms  involve
determining several parameters that affect the algorithm’s
performance, such as:
* Population Size: The number of individuals in each
generation. Increasing the size may give rise to a broader
exploration of solutions, but it also increases computational
cost.
* Number of Generations: The number of iterations the
algorithm executes before stopping. This depends on the
complexity of the problem and the available time.
* Crossover Rate: The percentage of individuals undergoing
crossover in each generation. This rate is usually high to
achieve greater genetic diversity.
* Mutation Rate: The percentage of individuals subjected to
mutation in each generation. Low mutation rates are used to
avoid drastic changes in solutions [1, 4, 11].

5) Tools and Software
To implement genetic algorithms,
software can be used:

several tools and
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* Python Programming Language: It is one of the most
widely used languages in this field, due to specialized
libraries like DEAP.

* DEAP Library: A Python library that provides tools to
easily build and implement genetic algorithms.

* MATLAB: It contains built-in tools for implementing
genetic algorithms and analyzing results.

These tools have been widely adopted in the scientific
community for  implementing evolutionary  and
metaheuristic algorithms, due to their flexibility and open-
source libraries. For instance, Python’s DEAP framework
and MATLAB’s Global Optimization Toolbox have been
extensively used in recent works for designing, testing, and
visualizing GA-based optimization processes in wireless
communication and machine learning applications [ 18-20]

6) Evaluation Metrics To measure the performance of
a genetic algorithm, several metrics can be used.:
» Convergence Rate: Measures how quickly the algorithm
reaches the optimal or near-optimal solution.
* Solution Quality: Evaluates how close the resulting
solution is to the known or expected optimal solution.
* Genetic Diversity: Measures the diversity of individuals in
the population, helping to avoid converging to local optima.

IV. USING A GENETIC ALGORITHM TO SOLVE THE
BLUETOOTH INTERFERENCE PROBLEM

In places where numerous Bluetooth devices, such as
wireless headphones, keyboards, and mice—are used
simultaneously, they all share the same 2.4 GHz frequency
range. However, with only 79 available channels, problems
arise when multiple devices select the same or adjacent
channels, causing signal interference. This interference
leads to several complications. Connections weaken or
become unreliable, resulting in lost data, delays, or
disruptions. Moreover, devices drain their batteries faster
because they constantly need to resend lost information.
Lastly, the overall performance of these wireless devices
decreases, as they compete for limited channel space. In
short, the more Bluetooth devices present, the more likely
they are to interfere with each other, resulting in frustration,
poor connectivity, and shorter battery life. Solving this
issue is essential for a smooth and reliable Bluetooth
experience.

Proposed Solution:

Assign Bluetooth channels to devices strategically to reduce
interference. By ensuring each device operates on a
separate or sufficiently distant channel from others,
available frequencies are used more effectively. This
strategy greatly improves overall network performance,
leading to more stable connections and better user
experience.
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Table 1: Steps of the Genetic Algorithm for solving
Bluetooth interference.

Initial Population

\

random solutions

Fitness Evaluation

Measure the interference

Selection

best solutions

Crossover

Combine solutions

Mutation

random changes

New Generation

improved solutions

Optimal Solution

minimizes interference

Bluetooth Interference Problem (Before Solution)
PN

N Channels
PN mEm Channel 1
= Channel 2
Channel 3
$e
NS
VRS
N7 N
N N1
7\

Fig. 4 Initial random allocation of Bluetooth channels.

To effectively address Bluetooth channel interference and
enhance wireless communication quality, the Genetic
Algorithm (GA) is applied. Inspired by natural evolution,
this algorithm gradually evolves towards the optimal
channel distribution. The process begins by creating a
random set of initial solutions, assigning random
frequencies to each Bluetooth device from the available
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channels. Each solution is then evaluated using a Fitness
Function, which measures how much interference occurs
when multiple devices use the same channel. Higher
interference  means  poorer  performance, weaker
connections, and greater energy consumption due to
repeated data transmissions.

Therefore, the best solutions are those with the least
interference. After evaluation, the algorithm selects the
best-performing solutions (Selection)—those with minimal
interference—to pass onto the next stage. Then, through a
Crossover process, parts of these top solutions are
combined to produce a new set of solutions inheriting better
characteristics. To maintain diversity and prevent the
algorithm from getting stuck in suboptimal solutions (local
optima), a Mutation step is introduced, randomly modifying
some channels to explore different possibilities.

These steps are repeated over multiple generations,
continuously improving solutions until the most effective
channel distribution is found. Ultimately, this process
results in an optimized allocation of Bluetooth channels,
reducing the number of devices that share the same
frequency. This significantly minimizes interference,
resulting in more stable and efficient connections, reduced
power consumption, and enhanced user experience through
faster responses and better data transfer efficiency. This
approach enables intelligent spectrum management,
ensuring Bluetooth devices operate harmoniously without
disrupting each other.

Genetic Algorithm: Selection, Crossover, and Mutation

Selection Crossover Mutation New Generation

Comone Parts
of Solutions

Select Best
Solutions

Randomly Modify
Channels

mproved
Solutions

4 A

Inherit Best Traits Introduce Diversity

Fig 5. Process of selection, crossover, and mutation

Before Mutation Chl Ch2 Ch3 Cha Chs
After Mutation chl Ch2 Chs cha Ch3

[Random changes introduce dwersity'
and help find better solutions

Fig 6. Optimized Bluetooth channel distribution
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V. COMPARISON OF NETWORK PERFORMANCE BEFORE
AND AFTER GENETIC ALGORITHM-BASED CHANNEL
OPTIMIZATION

A comparison was made between channel distribution
before and after applying the Genetic Algorithm (GA)
through the following steps:

* Collecting Initial Data: Channels were randomly assigned
to devices, and interference levels were measured.

* Applying the Genetic Algorithm: Channel distribution
was optimized using selection, crossover, and mutation
processes to minimize interference.

* Analyzing Results: The improvement in connection
quality was assessed by measuring the reduction in
interfering devices, packet loss, and battery consumption.

Results, after implementing the GA a significant reduction
in channel interference was observed, leading to improved
connection performance. The following table summarizes
the key results.

Table 2. Performance Improvement Metrics Before and
After Applying Genetic Algorithm

Metric Before | After | Improvement
GA GA (%)

Number of Interfering | 30 5 83%

Channels

Packet Loss Rate 15% 3% 80%

Average Delay (ms) 50 10 80%

Battery =~ Consumption | 70 40 42%

(%0)

Visual Data Analysis:

Graphical representations were created to illustrate the
channel distribution before and after optimization using the
following plots:

* Histogram: Displays the number of devices using each
channel

Comparison of Channel Distribution Before and After Optimization

10 == Before GA
m—pfter GA

Number of Devices
o ®

-

o 10 20 30 40 50 60 70 80
Channel Number

Fig 7. Histogram of channel usage before and after
optimization
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Heatmap of Channel Interference
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Fig 8. Heatmap showing interference levels before and after
optimization

VI. CHALLENGES

Efficient  channel allocation in  Bluetooth-dense
environments poses a significant challenge due to the
limited number of available channels and the high volume
of simultaneously operating devices. This congestion often
leads to severe signal interference, diminishing
communication quality. Furthermore, some channels may
experience higher levels of interference based on the
physical proximity and activity of neighboring devices.
Therefore, a well-designed channel distribution strategy is
essential to minimize overlap, reduce interference, and
maintain stable and reliable connections.

Genetic Algorithms (GAs) have proven to be a powerful
tool for solving such optimization problems, thanks to their
flexibility and global search capabilities. However, several
challenges limit their practical effectiveness:

Computational intensity: The performance of GAs often
requires large populations and numerous generations,
resulting in high computational demands that may not be
feasible for real-time or resource-limited systems.

Susceptibility to local optima: Without adequate genetic
diversity, GAs can converge prematurely to suboptimal
solutions, missing better alternatives.

Parameter dependency: The success of GAs relies heavily
on fine-tuning various parameters, such as mutation and
crossover rates, which can be complex and require
extensive experimentation to optimize.

Effectively addressing these issues is crucial for
maximizing the benefits of Genetic Algorithms in
managing Bluetooth channel distribution, particularly in
dynamic and high-interference environments.

VII. RESULTS AND CONCLUSIONS

The results obtained by applying the Genetic Algorithm to
solve the Bluetooth channel interference problem were
highly successful, yielding a fitness score close to 0 or 1.
Such a low fitness value signifies that very few or no
devices ended up sharing the same or similar channels,
effectively reducing interference to a minimum. This result
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demon-states that the algorithm successfully identified an
optimal or near-optimal channel al-location, substantially
enhancing communication quality by significantly
minimizing interference, data loss, and connection
instability. This outcome underscores the power of genetic
algorithms in solving complex interference challenges. By
exploring numerous potential solutions efficiently and
progressively refining them over multiple generations, the
algorithm ensures more stable and efficient Blue-tooth
communication. Users benefit from lower latency, higher
data transfer speeds, and improved battery life due to fewer
retransmissions. Ultimately, the proposed model effectively
managed the frequency spectrum. It allowed Bluetooth
devices to operate harmoniously, minimizing interference
and improving connection quality. To further validate the
performance of the proposed algorithm, a comparative
analysis was conducted against other popular metaheuristic
approaches from recent literature, as summarized in Table
3.

Interpretation

This comparative summary highlights that the proposed GA
achieved the highest measured interference reduction
among the reviewed methods, while maintaining moderate
computational complexity. Although PSO and ACO
techniques have shown faster convergence in some wireless
applications, they require more parameter tuning and may
exhibit reduced adaptability in highly dynamic
environments such as Bluetooth networks. In contrast, the
GA approach balances exploration and exploitation
effectively, producing consistent and stable improvements
across multiple performance metrics.

VIII. FUTURE WORK

Dynamic Future research should aim to develop adaptive
mechanisms that dynamically adjust the parameters of
genetic  algorithms during execution to enhance
performance and prevent premature convergence.
Combining Genetic Algorithms with other optimization
techniques such as Particle Swarm Optimization or Ant
Colony Optimization could further improve the balance
between exploration and exploitation. = Moreover,
implementing parallel or distributed versions of the
algorithm can significantly reduce computation time and
enhance scalability. Incorporating context-awareness,
including device location and real-time interference levels,
would allow for more intelligent and adaptive channel
allocation. Finally, validating the approach in real-world
environments is crucial to assessing its practicality and
robustness, while integrating energy consumption into the
optimization process can ensure a better trade-off between
performance and power efficiency, particularly for IoT and
wearable applications.
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Table 3. Comparative Analysis of Genetic Algorithm and
Other Metaheuristic Approaches:

Algorithm | Accuracy /| Time Notes /
Interference | Complexity Reference
Reduction (Empirical)
Proposed 83% O (P x G x C), | Tuned
GA(this reduction in | where P = | mutation
work) interfering population size, | and
channels G = number of | crossover
(from 30 to | generations, C = | rates;
5); Packet | chromosome normalized
loss evaluation cost. | fitness
decreased Moderate achieved
from 15% to | runtime on | (final F =
3%; Average | MATLAB/Pytho | 0.07).
delay reduced | n.
from 50 ms to
10 ms.
Discrete- Reported Generally faster | Based on
PSO improved convergence but | Qin et al.,
(example) fairness and | sensitive to | 2024 [14].
reduced parameter
overlap in 2.4 | tuning.
GHz wireless
deployments.
ACO-based | Effective for | Higher per- | Based on
method load-aware iteration Alam et
channel computation due | al., 2024
assignment to  pheromone | [15].
and SINR | update process.
improvement
in IoT and
WLAN
systems.
Other GA | Demonstrated | Similar Based on
variants efficient computational Ussipov et
(e.g., router cost as standard | al., 2024
MEGA) placement GA; depends on | [16].
and energy- | encoding
aware scheme.
coverage
optimization.
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Abstract Accurately predicting student performance has become a priority in the field of educational data mining, offering
valuable insights for early intervention and academic planning. This study presents a hybrid approach combining machine
learning and metaheuristic algorithms for enhanced predictive accuracy. The XGBoost regression model is optimized using three
feature selection techniques: Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Simulated Annealing (SA).
Experimental results show that PSO consistently outperforms other algorithms in reducing prediction error. The proposed

framework highlights the importance of intelligent feature selection in improving academic prediction systems.

Index Terms—Student GPA Prediction, Feature Selection, Metaheuristics, PSO, GA, SA, XGBoost, Machine Learning.

I. INTRODUCTION

With the increasing availability of educational data,
machine learning has become a powerful tool for predicting
student academic outcomes. Early identification of students
at risk of underperformance allows institutions to intervene
effectively, improving overall educational success.
However, traditional predictive models often struggle with
overfitting and high-dimensional data, making feature
selection a critical step in building efficient and accurate
models. To address this challenge, metaheuristic algorithms
offer robust and flexible search mechanisms capable of
identifying the most relevant features while avoiding local
optima. In this study, we integrate metaheuristic-based
feature selection with XGBoost, a high-performance
machine learning algorithm, to enhance GPA prediction
accuracy. Specifically, we compare the effectiveness of
three popular metaheuristics: Particle Swarm Optimization
(PSO), Genetic Algorithm (GA), and Simulated Annealing
(SA). To gain deeper insight into the dataset, a correlation
heatmap (Figure 1) was generated to explore the
relationships between features and GPA. The results
revealed that Absences exhibited a strong negative
correlation with GPA (—0.92), indicating that students with
more absences tend to perform worse academically.
Similarly, Grade Class showed a high negative correlation

Altmami, N., Alhassan, A., Almutairi, M., & Almaaz,
H. (2025). Predicting Student Performance using
Metaheuristic Optimization and XGBoost. Journal of
Shaqra University for Computing and Information
Technology, 1(1), 30-37.
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(—0.78). In contrast, variables such as Parental Support and
Tutoring demonstrated weak positive correlations, while
features like Gender, Ethnicity, and Sports had minimal
influence on GPA. This highlights the importance of

selecting features that meaningfully contribute to

rediction.
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Age W 0.04 -0.03 0.03 -0.01 -0.01 -0.01 0.03 -0.03 -0.05 -0.00 0.01 000 -0.01
Gender - 004 [FESY 002 001 001 002 -0.03 001 001 -0.01 001 0.00 -0.01 0.02
Ethnicity - 0.03 0.02 [ER 0.03 001 0.03 -0.02 0.02 -0.01 -0.00 0.01 0.0l 003 -0.02
arentalEducation - 0,03 001 003 RS 0.01 004 -0.02 0.02 001 000 004 001 -0.04 004

StudyTimeWeekly - -0.01 0.01 001 -0.01 Bl 0.01 003 004 -0.02 0.01 001 -0.02 018 -0.13

Absences - -0.01 0.02 -0.03 0.04 001 BHJUR 0.02 0.00 000 0.04 -0.01 -0.02 -0.25
Tutoring - 0.01 0.03 -0.02 -0.02 003 -0.02 IR 0.00 000 001 -0.01 0.05 015 -0.1L
ParentalSupport - 0.03 0.01 0.02 -0.02 004 0.00 -0.00 jEEV\R -0.01 -0.01 0.04 -0.01 019 -0.14 - 0.00
Extracurricular - -0.03 -0.01 -0.01 0.01 -0.02 0.00 0.00 -0.01 JEWVE -0.01 -0.01 -0.01 0.09 -0.07
Sports - -0.05 -0.01 -0.00 0.00 0.01 0.04 001 -0.01 -0.01 Wl -0.02 -0.00 0.06 -0.03 —o025

Music - -0.00 001 -0.01 004 001 -0.01 -0.01 0.4 -0.01 -0.02 RN 0.02 0.07 -0.04

\olunteering - 0.01 -0.00 001 0.01 -0.02 -0.02 -0.05 -0.01 -0.01 -0.00 002 [EKLE 0.00 0.01

GPA- 000 -0.01 003 -0.04 018 RPN 015 019 009 O.
GradeClass - 0.01 0.02 -0.02 0.04 -0.13 [UZEl 0.11 0.14 -0.07

o
o
&

0.07 0.00

°
°
2

I

°

I

0.04

°
S
=)

Tutoring
Sports -
Music

s
o
9
<
&
S

Absences
Volunteering - ¢

ParentalSupport -
Extracurricular -

ParentalEducation -
StudyTimeWeekly -

Fig 1. Correlation Heatmap Between Features and GPA

Visual explorations were also performed to illustrate
specific patterns. A box plot of GPA distribution by
parental support (Figure 2) showed a clear upward trend;
students with higher parental support generally achieved
higher GPAs with less variation. Additionally, a scatter plot
of Study Time per Week vs GPA (Figure 3) segmented by
gender revealed a slight positive trend. students who study
more tend to have slightly higher GPAs, though no strong
linear pattern was observed. This visualization also enabled
exploration of potential gender-based differences in study
habits and performance.
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Together, these analyses reinforce the value of applying
intelligent feature selection before training predictive
models. By removing noise and focusing on impactful
features, the proposed metaheuristic-enhanced XGBoost
framework offers a promising approach to improving
academic performance prediction. Recent studies such as
Cortez and Silva [1] and Chandra et al [2]. emphasizes the
importance of combining domain knowledge with
algorithmic optimization to boost model performance.
Building on this foundation, our study tests PSO, GA, and
SA for optimizing feature subsets used in XGBoost
regression.

II. RELATED WORK

A. Feature Selection in Educational Data Mining

Feature selection plays a critical role in Educational Data
Mining (EDM) by reducing dimensionality, enhancing
model interpretability, and mitigating overfitting. Early
studies utilized conventional filter and wrapper approaches,
such as Information Gain and Fast Correlation-Based Filter
(FCBF), to identify relevant predictors of academic
performance [3], [4]. However, these methods often assume
linear relationships and fail to capture complex, nonlinear
dependencies among features.
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Recent works have shifted toward metaheuristic-based
feature selection techniques to overcome such limitations.
Velmurugan and Anuradha [3] demonstrated that wrapper
methods yield higher accuracy at the cost of computational
complexity. Similarly, Maryam et al. [4] highlighted that
the FCBF algorithm efficiently eliminates redundant
features while preserving relevant ones.
More recent studies from 2023-2025 have validated the
effectiveness of nature-inspired optimizers such as Whale
Optimization Algorithm (WOA), Grey Wolf Optimizer
(GWO), and Harris Hawks Optimization (HHO) in
educational prediction tasks, often outperforming traditional
search algorithms when paired with ensemble learners [8],
[9]. These approaches exhibit strong convergence
properties but remain sensitive to hyperparameter tuning,
necessitating adaptive or hybrid metaheuristic strategies.

B. Metaheuristic Algorithms for Feature Selection

Metaheuristic algorithms, including Particle Swarm
Optimization (PSO), Genetic Algorithm (GA), and
Simulated Annealing (SA), are recognized for their ability
to efficiently explore large feature spaces and avoid local
minima. Syarif et al. [5] and Port [6] demonstrated their
utility for high-dimensional optimization problems such as
intrusion  detection and hybrid feature selection,
respectively. In academic performance prediction, PSO and
GA have been frequently used to optimize feature subsets
and improve classification or regression accuracy [10]. A
2024 comparative study by Kuntalp et al. [9] evaluated
multiple metaheuristics across educational datasets and
concluded that GA and PSO exhibit consistent results under
varying data distributions, while hybrid models (e.g., GA—
PSO, WOA-PSO) further enhance stability. Additionally,
adaptive versions of these algorithms—such as dynamic
inertia in PSO or elitism in GA—have demonstrated
improved generalization on noisy educational data [11].
However, these  algorithms demand  significant
computational resources, particularly during iterative
evaluation stages. Thus, recent literature emphasizes the
need for metaheuristic-machine learning hybridization that
balances accuracy and efficiency through early stopping
and surrogate modeling.

C. XGBoost in Academic Performance Prediction

Extreme Gradient Boosting (XGBoost) has emerged as a
leading algorithm in educational analytics for its scalability,
regularization, and ability to model complex nonlinear
feature interactions [7]. Studies such as Regha and Rani [7]
reported superior accuracy of XGBoost over traditional
classifiers including Decision Trees and Logistic
Regression. Subsequent research from 2023-2025 has
reinforced these findings, confirming that ensemble
methods like XGBoost, CatBoost, and LightGBM
consistently outperform conventional learners in predicting
GPA, dropout risk, and course performance [12], [13].
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Villegas et al. [10] demonstrated that incorporating
socio-demographic and behavioral data enhances
XGBoost’s performance, while Hakkal et al. [8] optimized
learner performance prediction using tuned XGBoost
hyperparameters. Despite these advantages, ensemble
methods face criticism regarding interpretability and
computational overhead, particularly when used in real-
time student monitoring systems.

D. Research Gap and Contribution

The integration of Explainable Al (XAI) frameworks has
become increasingly vital in ensuring transparency and
interpretability of predictive models. Recent works have
employed SHAP (SHapley Additive Explanations) and
LIME (Local Interpretable Model-Agnostic Explanations)
to clarify model decisions and identify key factors
influencing student success [12], [13]. Islam et al. [13]
proposed a multi-level explainability framework combining
SHAP values with feature selection metrics to improve
educators’ trust in Al-driven decisions. Similarly, Hoq et al.
[12] applied SHAP to visualize the marginal impact of
study time and parental involvement on GPA predictions,
aligning with the factors emphasized in this study. These
developments underscore that model performance must be
coupled with interpretability to foster actionable insights for
teachers and academic institutions.

III. MATERIALS AND METHODS

A. Dataset Description

The dataset employed in this study, titled STUPER.csv,
comprises comprehensive academic and demographic
records of students, including behavioral, familial, and
personal study-related attributes. The dependent variable of
interest is the Grade Point Average (GPA), while
independent features include quantitative variables such as
Study Time per Week, and categorical variables such as
Parental Support, Gender, and others.

Before modeling, the dataset underwent preprocessing steps
that included:

* Removal of irrelevant columns (e.g., StudentID).

» Conversion of categorical variables (if necessary).

« Normal integrity checks.

» Splitting the data into training (80%) and test sets
(20%) using a fixed random seed (random_state=42).

B. Feature Selection via Metaheuristic Algorithms

To identify the most influential features contributing to
accurate GPA prediction, we employed three widely
recognized metaheuristic optimization algorithms: Particle
Swarm Optimization (PSO), Genetic Algorithm (GA), and
Simulated Annealing (SA). Each algorithm was configured
to search for an optimal subset of features that minimizes
the mean squared error (MSE) of an XGBoost regression
model.
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1) Particle Swarm Optimization (PSO)

PSO simulates the social behavior of particles (agents)
navigating the search space, with each particle representing
a binary feature selection mask. The fitness function is
based on the performance of an XGBoost regressor trained
on the subset of features selected by each particle. The PSO
parameters were configured as follows:

* Number of particles: 20

* Iterations: 30

* Inertia weight (w): 0.9

* Cognitive coefficient (c1): 0.5

* Social coefficient (c2): 0.3

* Neighborhood size (k): 5

* Minkowski distance metric (p): 2
The algorithm was implemented using the pyswarms library
with discrete binary optimization settings. During each
iteration, particles update their positions based on a
weighted combination of their personal best and global best
solutions.

2) Genetic Algorithm (GA)

GA emulates biological evolution through a population
of candidate solutions (chromosomes), each encoded as a
binary string denoting selected features. The algorithm
evolves the population through:

 Selection: Top 50% of the population based on fitness.

» Crossover: Single-point crossover between randomly
chosen parents.

* Mutation: Random bit flips at a mutation rate of 10%.

Each generation retains the top-performing individuals
and generates offspring through crossover and mutation,
leading to progressive improvement. The algorithm was
executed for 30 generations with a population size of 20.

3) Simulated Annealing (SA)

SA performs a local search guided by a temperature-
controlled probability function to escape local minima. It
begins with a random feature subset and explores
neighboring configurations by flipping a single feature bit
at each iteration. Acceptance of worse solutions is
probabilistically  controlled using the Boltzmann
distribution:

AE
P=ewp (-7)

Where AE is the increase in error, and T is the current
temperature. Parameters used:

* Initial temperature: 1.0

* Minimum temperature: 0.001

* Cooling rate: 0.95

* Iterations: 100

The SA process prioritizes global exploration in early
stages and gradually transitions to local exploitation.
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C. Predictive Modeling with XGBoost

Following feature selection, a predictive model was
trained using Extreme Gradient Boosting (XGBoost), a
tree-based ensemble method known for its scalability and
robustness. The model was instantiated with:

* Number of estimators: 100

* Learning rate: default

* Maximum depth and regularization: default

« Random state: 42 (for reproducibility)

XGBoost was chosen for its superior performance on
tabular datasets and its built-in handling of missing values,
multicollinearity, and overfitting via regularization.

D. Evaluation Metrics

The predictive performance of the models was evaluated
using the following metrics:

* Mean Squared Error (MSE): Measures average
squared deviation between actual and predicted GPA
values.

* R-squared (R?): Indicates the proportion of variance in
the GPA explained by the model.

» Accuracy-like metric: Percentage of predictions within
+0.3 GPA points of the actual value, reflecting practical
prediction reliability in educational contexts.

All evaluations were conducted using the test set (20%
holdout), ensuring an unbiased estimate of generalization
performance.

IV. MODEL DEVELOPMENT

A. Baseline Model Construction

The initial step in model development involved
establishing a baseline regression model using all available
features. The XGBoost Regressor was selected for its
proven effectiveness on structured tabular data and its
ability to handle non-linearity, multicollinearity, and feature
interactions efficiently. The model was trained using default
hyperparameters with n_estimators=100 and
random_state=42 for reproducibility. The training and
testing sets were obtained through an 80/20 split using
stratified sampling to ensure balanced distribution of GPA
scores. Performance metrics, including mean squared error
(MSE), R? score, and +0.3 GPA accuracy, were recorded to
serve as a benchmark against which the metaheuristic-
enhanced models would be evaluated.

B. Feature Selection-Driven Model Enhancement

To improve model generalization and interpretability, we
integrated feature selection as a pre-modeling step using
three nature-inspired optimization algorithms: Particle
Swarm Optimization (PSO), Genetic Algorithm (GA), and
Simulated Annealing (SA). Each algorithm identified a
binary subset of features most relevant to GPA prediction.

For each resulting subset:

* A new XGBoost model was retrained using only the
selected features.

Vol.1, Issue 1

33

* Model training procedures remained consistent across
all algorithms to ensure fair comparisons.

* Evaluation was performed on the same test set to
maintain experimental integrity.

C. PSO-Enhanced Model

The PSO-enhanced model employed a feature mask
derived from the particle with the lowest MSE after 30
iterations. Feature subsets selected by PSO consistently
improved performance, demonstrating better generalization
by eliminating redundant or noisy attributes. The resulting
XGBoost model trained on the PSO-selected features
outperformed the baseline in all evaluation metrics. This
indicates that PSO was able to effectively exploit the
feature space and identify optimal configurations for
improved regression accuracy.

D. GA-Enhanced Model

The GA-enhanced model was trained using feature
subsets evolved through selection, crossover, and mutation
over 30 generations. The best-performing chromosome,
representing the feature subset with the lowest validation
error, was used for final model training. While the GA-
enhanced model showed improvement over the baseline, its
performance was slightly lower than the PSO-enhanced
variant. This may be attributed to the higher variance in GA
due to its stochastic selection process and lack of global
awareness compared to swarm intelligence.

E. SA-Enhanced Model

The SA-enhanced model utilized a final feature
configuration obtained after 100 iterations of probabilistic
exploration. Although SA provided competitive results, it
converged more slowly than PSO and GA, and the final
feature set often included fewer variables. This minimalistic
feature selection led to reduced model complexity but also
slightly lower predictive performance. Nonetheless, SA
demonstrated  value in  scenarios where model
interpretability or dimensionality reduction is prioritized.

V. RESULTS AND DISCUSSION

This section details the evaluation of GPA prediction
models using XGBoost, both in baseline form and enhanced
with three metaheuristic-based feature selection techniques:
Particle Swarm Optimization (PSO), Genetic Algorithm
(GA), and Simulated Annealing (SA). Models were
assessed using Mean Squared Error (MSE), R? Score, and a
custom Accuracy (0.3 GPA) metric.

A. Baseline Model Performance

The baseline model was trained using the full feature set
without any selection or filtering. (Figure 4) compares the
predicted GPA against actual values for the first 50 students
in the test set. While predictions generally track the trend of
true values, deviations are visible, especially for low and
high GPAs.
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Figure 4: Actual vs Predicted GPA Values (First 50
Students) Using Baseline XGBoost Model Without Feature
Selection

The baseline model achieved:
e MSE: 0.0463
e R? Score: 0.9440
* Accuracy (0.3 GPA): 86.01%

Although the results are strong, the correlation heatmap
revealed that several features (e.g., Music, Volunteering,
Sports) had negligible relationships with GPA, suggesting
potential redundancy. This motivated the application of
metaheuristic algorithms for feature subset optimization.

B. PSO-Enhanced Model

The Particle Swarm Optimization algorithm was run with
20 particles across 30 iterations to optimize feature
selection. The resulting XGBoost model trained on PSO-
selected features yielded:

* MSE: 0.0461

* R?Score: 0.9442

* Accuracy (£0.3 GPA): 85.18%

Although marginally lower in accuracy than the baseline,
PSO reduced the feature space and enhanced model
interpretability. The prediction accuracy improved by
50.00% of students (in a subset of 50 cases), as shown in
(Figure 5) the PSO process effectively eliminated
redundant features, improving computational efficiency
with a minimal loss in accuracy, confirming its
effectiveness for many individuals despite similar aggregate
metrics. Furthermore, (Figure 6) illustrates the line plot of
GPA predictions before and after PSO for the first 50
students. The plot shows how predictions align more
closely with actual GPA values post-PSO for about half of
the students.
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Figure 5: Comparing Model Performance Before and After
Applying PSO for Feature Selection
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Figure 6: Line plot of GPA predictions before and after
PSO for the first 50 students

C. GA-Enhanced Model

Genetic Algorithm was configured with 20 chromosomes
and 30 generations, using crossover and mutation for
exploration. The final model yielded the best performance
overall:

* MSE: 0.0443

* R2? Score: 0.9465

* Accuracy (£0.3 GPA): 87.89%

GA not only outperformed the baseline but also
surpassed PSO and SA in all metrics. It selected a more
optimal feature subset that preserved signal strength while
discarding noise, making it the most effective metaheuristic
in this study.

D. SA-Enhanced Model

Simulated Annealing was implemented using a
temperature decay scheme (T=1.0 to T=0.001) with 100
iterations. The model produced:

* MSE: 0.0461

* R2? Score: 0.9442

* Accuracy (0.3 GPA): 86.64%

SA matched PSO in both MSE and R? but slightly
exceeded it in accuracy. It offers a simpler, lightweight
alternative to swarm-based and population-based search
while still delivering strong generalization.
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E. Discussion

Despite the baseline XGBoost model already exhibiting
high accuracy, metaheuristic feature selection refined it
further:

* GA delivered the best overall results, confirming its
robustness and search efficiency.

* PSO offered interpretability gains and helped half the
students in the sample improve their prediction accuracy.

* SA showed competitive performance with minimal
feature reliance, favoring simplicity.

These results highlight the value of hybrid modeling
Table 1, merging metaheuristic optimization with gradient-
boosted learning in educational analytics applications. In
particular, GA and PSO show promise for integration into
GPA forecasting systems, academic advising tools, and
early risk detection platforms. Recent studies further
substantiate these findings. Hakkal et al. [8] demonstrated
that optimizing XGBoost parameters through hybrid
metaheuristics significantly enhances learner performance
prediction accuracy, while Villegas et al. [10] confirmed
that ensemble-based models such as XGBoost and
CatBoost outperform classical machine learning approaches
across multi-factor student datasets. Similarly, Kuntalp et
al. [9] found that both GA and PSO consistently produce
compact, high-quality feature subsets, strengthening model
generalization and interpretability results that align with the
present study’s GA superiority. In contrast, emerging
research debates the universality of metaheuristic
superiority. Comparative analyses indicate that model
rankings may shift depending on dataset scale,
hyperparameter tuning, or the defined fitness objective [9],
[11]. Adaptive hybrid variants such as GA-PSO and
WOA-PSO have shown improved stability in recent works,
suggesting that future studies should explore dynamic or
multi-swarm strategies to further enhance convergence [9].
Moreover, Alnasyan et al. [11] emphasized that deep
models such as Bi-LSTM and Transformer networks
outperform tree ensembles when sequential or temporal
data are available, implying that hybrid metaheuristics may
be more beneficial for cross-sectional datasets such as the
one used here.

Explainability also remains a growing focus. Recent
explainable Al (XAI) research integrates SHAP and LIME
techniques to provide interpretable insights into academic
predictors [12], [13]. Hoq et al. [12] applied SHAP to
XGBoost-based student models, confirming that variables
like Parental Support and Study Time also significant in
this study have the highest contribution to GPA outcomes.
Islam et al. [13] similarly stressed that interpretable
ensemble models enhance educators’ trust and improve
intervention strategies. The inclusion of SHAP-based
analysis in future extensions of this framework would
therefore strengthen the model’s transparency and real-
world applicability. Finally, computational trade-offs
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should be noted. Although GA achieved the best
performance, it required higher computation time,
consistent with previous observations that evolutionary
search increases runtime complexity [9], [11]. This
underlines the importance of balancing performance gains
with efficiency, particularly for large-scale or real-time
educational analytics systems. Overall, the integration of
recent literature reinforces that combining metaheuristic
optimization with ensemble learning, particularly GA- and
PSO-enhanced XGBoost, represents a promising and
explainable direction for educational data mining. Future
research should evaluate these hybrid models across diverse
institutions, explore adaptive metaheuristic hybrids, and
incorporate explainable Al components to ensure predictive
accuracy and interpretability remain balanced in
educational practice.

Table 1: Comparative performance metrics for GPA
prediction models

Model MSE R® Seore | ié;“é{f::)y
Baseline 0.0463 |  0.9440 86.01%
(All Features)
PSO+XGBoost | 0.0461 |  0.9442 85.18%
GA +XGBoost | 0.0443 |  0.9465 87.89%
SA +XGBoost | 0.0461 | 0.9442 86.64%

Bar plots in (Figure 7) confirm these differences visually,
showing GA with the highest predictive power. Notably, all
metaheuristics achieved either comparable or superior
performance to the baseline, while also reducing feature
count.

[0 Comparison of PSO, GA, and SA for GPA Prediction

Figure 7: Comparison of PSO, GA, and SA in terms of
MSE, R?, and accuracy (within 0.3 GPA)

VI. CHALLENGES AND LIMITATIONS

Despite the promising results achieved through
integrating metaheuristic optimization with XGBoost for
GPA prediction, several challenges and limitations emerged
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throughout the research process.

A. Challenges

Feature redundancy and irrelevance were among the
most prominent issues. Although the dataset contained a
wide range of behavioral, academic, and demographic
features, several exhibited weak or non-significant
correlations with GPA. This diluted the predictive signal
and increased the risk of overfitting, making feature
selection essential. Metaheuristic  algorithm  tuning
presented another technical challenge. The effectiveness of
PSO, GA, and SA depends heavily on their respective
control parameters (e.g., particle size, mutation rate,
temperature  schedule). Determining the appropriate
configuration to ensure convergence without falling into
local optima required extensive experimentation and
validation. A further challenge lies in achieving
performance gains over a strong baseline. Since the
XGBoost model trained on all features already delivered
high predictive accuracy (R* = 0.9440, Accuracy =
86.01%), improvements via feature selection were
necessarily incremental. Demonstrating value beyond
numeric gains required additional visualizations and per-
student accuracy assessments. Balancing interpretability

with  complexity = was another trade-off. While
metaheuristic-selected features enhanced model
compactness, the selection logic remained opaque.

Differences in selected subsets across algorithms introduced
variability that complicates transparent interpretation,
especially in educational settings where explainability is
vital. Finally, scalability and generalizability remain open
challenges. The current implementation was tested on a
single-institution dataset. Scaling to broader datasets across
schools or regions would introduce new complexities in
feature distributions, cultural factors, and labeling
consistency.

B. Limitations

This study is subject to several limitations. First, it relied
on a single dataset, which may not capture the variability
present across different educational contexts. Broader
validation across multiple institutions is required to assess
generalizability. Second, XGBoost hyperparameters were
held constant during model comparisons to isolate the
impact of feature selection. While this ensured experimental
control, it potentially limited the absolute performance of
each optimized model. Third, the dataset contained no
temporal or longitudinal features. Modeling trends over
time, such as changes in attendance, engagement, or
academic performance, could enable richer, more
personalized predictions. Fourth, although the study
emphasized accuracy, post-hoc interpretability techniques
such as SHAP or LIME were not applied. These tools could
help educators understand feature-level influence and
justify predictions in real-world applications. Lastly,
metaheuristic optimization is computationally intensive,
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especially on high-dimensional data. Practical deployment
would require efficiency improvements or approximations
for real-time use in student analytics systems.

VII. CONCLUSION AND FUTURE WORK

This study explored the integration of metaheuristic
optimization techniques, Particle Swarm Optimization
(PSO), Genetic Algorithm (GA), and Simulated Annealing
(SA)with the XGBoost regression model for predicting
student GPA based on behavioral, demographic, and
academic features. The results demonstrated that all three
algorithms significantly enhanced model performance
compared to the baseline (no feature selection), with GA
achieving the best results across all evaluation metrics:
MSE = 0.0443, R? = 0.9465, and prediction accuracy within
+0.3 GPA = 87.89%. PSO also exhibited competitive
performance, improving predictions for 50% of the students
in a subset analysis, highlighting its practical efficacy. In
addition to quantitative improvements, the visual analytics,
such as correlation heatmaps, GPA distributions, and
prediction accuracy plots, reinforced the relevance of
specific features like parental support and weekly study
time in GPA outcomes. These findings support the viability
of metaheuristic-guided feature selection in enhancing
predictive models within educational data mining. Future
work could build upon these findings in several ways.
Incorporating temporal features, such as attendance logs or
cumulative performance indicators, may enhance the
model’s ability to capture longitudinal patterns. The
integration of deep learning techniques, such as Long
Short-Term Memory (LSTM) networks or Transformer-
based models, alongside metaheuristic feature selectors,
could provide deeper insights into feature interactions.
Further validation through cross-institutional datasets is
recommended to assess the generalizability of the approach.
Lastly, embedding interpretability frameworks like SHAP
or LIME would improve transparency and foster trust in the
model’s predictions among educators and administrators.
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facilities. This automation has helped to increase accuracy,

I. INTRODUCTION reduce errors, and save money on operational costs.

This convergence of robotics and Al at a worldwide scale Currently, Al has emerged as a key driver for productivity in

has transformed how people are organized for work and the industry, transforming its organizational practices and
nature of productivity. Alongside these challenges lie the macroeconomic performance [2].

opportunities related to labor sustainability and economic The realization of Al's capability to perform tasks that

security while also offering unparalleled efficiencies and were previously thought to be exclusively human, such as
creativity. At the same time, they raise questions about the computer vision, natural language processing, decision-
future of traditional jobs and work practices. There are making, and even creativity, has led to a significant increase
already some Al-based systems being used by industries like in efficiency across a wide range of industries. From the
manufacturing, finance, logistics, and healthcare. The perspective of healthcare, Al-powered diagnostic systems
productivity gains achieved through the application of are making it possible to diagnose diseases faster and more
sophisticated natural language processing and multi-modal accurately, thereby improving patient well-being and
data analysis techniques have been quite profound [1]. organizational efficiency. The McKinsey Global Institute
Similarly, robots have greatly helped automate routine and estimates that adoption of Al and automation across

manufacturing could boost productivity by around 30% over

repetitive tasks, especially in warehouses and production : |
the next 10 years [3]. Also, the rise of robotics systems has

Alotaibi, M. (2025). Artificial intelligence and robotics increased the demand for high-skill Al-related jobs
transforming productivity growth, labor markets, and (particularly requiring maintenance and programming skills)
income distribution. Journal of Shaqra University for and reduced the demand for employment with low-to-
Computing and Information Technology, 1(1), 38-47. medium skill levels in industries [4]. Such progress has led
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to a skills shortage that threatens to displace workers who do
not have access to quality training and, consequently, could
have adverse wage outcomes with further impacts on
socioeconomic inequality [5].

Recent research indicates that the pandemic has
accelerated the adoption of Al in the context of smart
manufacturing and supply chain digitization processes [6, 7].
In the healthcare industry, service accuracy has increased
with the use of Al tools and robotic surgeries. Artificial
Intelligence algorithms have improved trading and fraud
detection in the financial sector [8]. But as productivity
increases, traditional jobs are vanishing, leaving ethical,
social, and economic challenges to be tackled for inclusive
growth.

While Al has been widely implemented, resulting in
productivity improvements, the substitution of labor costs
has become a significant concern. Industries dependent on
low-skill or repetitive tasks are increasingly utilizing
machines for roles once performed by humans. For example,
Al has been integrated into customer service, retail, and
logistics, resulting in job displacement within these sectors.
Manufacturing has also seen automation technologies take
over tasks such as assembly and quality assurance. Frey &
Osborne [9] indicate that nearly half of U.S. jobs are at high
risk of automation within two decades, with significant
impacts expected in transportation, logistics, and
manufacturing. This shift is particularly pronounced in
emerging economies, where labor-intensive sectors have
been key contributors to job creation.

Al-driven displacement significantly impacts low-skilled
sectors, as many workers there don't have the qualifications
needed for the evolving roles. As automation continues to
advance, these individuals risk becoming permanently
displaced in an economy that values technical proficiency
and rapid adaptability. To address this, reskilling and
upskilling initiatives are essential for preparing the
workforce [10]. Demographic shifts, economic instability,
technological advancements, geopolitical fragmentation, and
sustainability trends will likely influence the global labor
market by 2030. The Future of Employment Report for 2025,
which includes insights from over 1,000 global employers,
examines macroeconomic trends and their potential impacts
on employment, workforce strategies, and skill development.
It is a study of over 14 million employees in larger industrial
concentrations and 55 markets, and is focused on the period
from 2025 to 2030 [5]. In addition, the expanding need for
skilled professionals who are knowledgeable about
maintenance and programming for Al and ML is expected to
open up new job opportunities for individuals with the
appropriate knowledge and expertise [11].

Artificial intelligence is changing the labor market, not
only by destroying jobs but by creating new jobs. It has led
to the emergence of flexible labor markets using gig
economy platforms and telecommuting systems. However,
this transformation towards a more flexible workforce may

Vol.1, Issue 1

39

open up new challenges, such as job insecurity, income
inequality, and access to benefits such as healthcare and
retirement plans. In today's digital world, the need for
emerging productivity trends has resulted in the creation of
new policies and regulatory models to protect workers while
maintaining fair wages in a fast-changing economy [12]. As
emerging Al technology adoption and robotic automation
practices in firms grow, skilled Al programmers, data
science experts, or robotics engineering professionals are
anticipated to experience a significantly increasing trend
[13].

The main goal of this paper is to explore the economic and
social impact of the adoption and use of artificial intelligence
(Al) and robots produced by a wide range of economies.
Specifically, this study aims to assess the productivity
growth, employment, and income distribution impact of
robot density using panel data from the International
Federation of Robotics (IFR) and the World Bank's World
Development Indicators (WDI). A second goal is to
investigate cross-country and regional heterogeneity in such
relationships to identify the mediating role of institutional
and structural factors in the benefits and risks of automation.

This paper makes several contributions to the growing

literature on Al, robotics, and labor market transformation.
First, it extends earlier studies by combining robotics
adoption data with macroeconomic and labor market
indicators, allowing for a simultaneous assessment of
productivity, employment, and inequality. Second, whereas
much of the existing work is either task-based or country-
specific, this paper provides a cross-country panel analysis
covering both advanced and emerging economies, thus
offering broader generalizability. Third, by linking empirical
findings with policy implications, the study advances an
integrated framework that connects technological adoption
with institutional capacity and social outcomes. In doing so,
the paper demonstrates that robotics adoption represents a
dual-edged transformation: it fosters economic efficiency
while also creating distributive challenges that require
proactive policy responses.
The paper is structured as follows. The introduction outlines
the motivation, research gap, and objectives of the study. The
literature review synthesizes existing research on the
relationship  between  Al, robotics, productivity,
employment, and inequality. The methodology section
describes the datasets, variables, and analytical framework
used in the empirical analysis. The results section presents
findings on global trends in robotics adoption, its
relationship with productivity, employment, and inequality,
and cross-country contrasts. The discussion interprets these
findings in light of existing literature and highlights their
theoretical and managerial significance. The conclusion
summarizes the key insights and sets out policy
recommendations to ensure that the benefits of robotics
adoption are realized while mitigating its social risks.
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II. LITERATURE REVIEW

A. Theoretical Framework and Hybrid Dynamics

Task-based models outline the task distribution shift between
capital and labor due to technological advancements,
highlighting task displacement and new human roles. These
models demonstrate productivity improvements and labor
market pressures, predicting a rising need for supplementary
cognitive and collaborative skills as routine tasks decrease,
reflected in income inequality and job stratification. From
rectangularization to the Al-robotics era, evidence shows Al
may boost production output but increase inequality within
(New Maniacs) or across occupations (Old Maniacs) without
income redistribution. OECD findings link AI exposure to
wage inequality gradients, emphasizing complementarity
over displacement [14]. Analyses of large language models
(LLMs) as general-purpose technologies (GPTs) reveal their
GPT-like characteristics, implying vast potential for
complementary innovations and extended adoption periods
to boost macroeconomic productivity. Organizational Al
maturity models, including manufacturing Al deployment
frameworks and enterprise Al maturity stages, integrate
governance, data, skill development, and operational
frameworks with quantifiable results, tackling the "pilot-to-
scale" obstacle [15].

B. Productivity Gain from Artificial Intelligence

An expanding body of research highlights Al and robotics
as catalysts for a new wave of productivity, while
simultaneously reconfiguring job roles, compensation
structures, and employment patterns. From macro-level
cross-country assessments, it is evident that the adoption of
these technologies has gained momentum across various
services (e.g., Al, robotic process automation, generative
systems) and industries (e.g., industrial robots). Labor
market outcomes are influenced by factors such as the shift
toward net-zero emissions, demographic transformations,
and varying technological capabilities among firms [16]. The
OECD's Employment Outlook 2024 [17] advocates for
policy measures focused on skill adaptation in response to
increased Al integration. The IMF's 2024 Staff Discussion
Note identifies generative Al's "task shuffling”" as the key
trend shaping the next 20 years. The ILO's global analysis
highlights that generative machine learning will transform
clerical and routine cognitive roles, affecting job quality and
availability, especially in developing economies [18]. While
robotization exhibits structural rather than cyclical patterns,
perception algorithm advancements now enable robots to
identify and interact with real-world objects, despite the
International Federation of Robotics reporting record-high
global robot stocks and ongoing installations [19].

C. Job Displacement and Labour Market Risks

Recent studies, including causal and quasi-experimental
designs, have demonstrated substantial productivity
enhancements resulting from Al tool integration into
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workflows. For instance, in randomized-controlled trials or
staggered-adoption scenarios, customer support agents
equipped with generative Al assistants resolved
approximately 14-15% more inquiries per hour, with the
most significant improvements observed among those in the
lowest tenure or skill brackets; this also positively impacted
quality and retention metrics [20]. In professional writing
contexts, experiments revealed that leveraging large
language models (LLMs) for assistance led to roughly 40%
time savings alongside enhancements in output quality [21].
Furthermore, emerging micro-evidence from European firms
and regions indicates either employment growth or neutral
net effects, despite task displacement within organizations,
aligning with productivity and market expansion dynamics.
European research on robot adoption has uncovered
associations with workforce transitions and reallocation
processes, including sectoral shifts and institutional factors
such as unions and mobility frictions [22]. Collectively, these
findings reconcile the apparent contradiction between short-
term job automation and firm-level productivity benefits,
while also shedding light on diffusion challenges like data
preparedness and process reconfiguration.

D. Inequality and Skills Polarization

Another strand of research creates metrics that evaluate
both technological progress and occupational task content.
The AI Occupational Exposure Index identifies industries
and roles where Al capabilities are advancing most rapidly,
though this exposure is uneven across occupations and
geographic regions [23]. In their analysis of generative Al,
Eloundou et al. pinpoint tasks that align with large language
model (LLM) outputs, showing that most workers interact
with LLM-related functions to some degree. Notably,
exposure to LLM functionalities isn’t limited to low-skilled
roles; higher-income occupations often exhibit greater
exposure [24]. The OECD (2024) builds on this by
illustrating how skill requirements are evolving for Al users,
particularly in non-specialized roles. As Al becomes more
widespread, skills in management, process optimization, and
communication are becoming increasingly critical, while
adaptive and adjacent technical skills play a key role in
effectively integrating Al. A related investigation links Al
exposure to patterns of wage inequality observed across 19
OECD countries [25].

E. The Hybrid AI-Robotics Labor Market Model

The paper proposes a Hybrid AI-Robotics Labor Market
Model, which incorporates both productivity augmentations
and labor substitution with explicit links between unequal
results and the processes inferred from prior empirical
evidence and theory. Much of the preceding work has studied
these factors in isolation, either looking at automation's
productivity gains or its destabilizing impacts on jobs. This
framework draws on a narrative in the literature that places
these dynamics in co-evolutionary terms (i.e., they develop
simultaneously by co-evolving) and in relational terms (i.e.,
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co-evolution is an interactive process of cause and effect).

The model incorporates three pillars: Productivity Boost,
Unemployment Pressure, and Inequality Magnification.
Productivity Improvements: Al's ability to improve
productivity, decrease errors, and streamline processes will
prove helpful in enhancing global competitiveness. Job
displacement due to automation has a downward bias,
replacing a large number of routine and manual jobs, which
is most likely to affect poor and medium-skilled workers and
is expected to affect the structure of occupational demand.
Productivity improvement combined with job displacement
leads to amplification of inequality, producing wage
polarization, dual labor markets, and unequal cross-sector
labor force gains from automation.

Inequality itself is a consequence of and a (negative)

feedback for current investments in reskilling and workforce
flexibility: growing inequality impedes such investments. It
perpetuates the unequal distribution of the gains from
automation. By conceptualizing inequality as an integral
feature of the cycle, the model highlights that productivity
growth alone will not lead to universal prosperity if no
deliberate policy changes are made.
The method is theoretically and application-based. It
combines  task-based  approaches,  general-purpose
technology perspectives, and skill-based approaches to
technological change in an integrated framework that reflects
automation's heterogeneous effects. The framework provides
policymakers and organizations with a diagnostic tool to
explore if Al and robotics are contributing to inclusive
growth or exacerbating socioeconomic disparities. By
combining these different theoretical dimensions, the
framework is also a guide for policy design of reskilling
efforts, social safety nets, and institutional readiness in
developed and developing countries.

III. METHODOLOGY

This study combines industry-level robotics adoption data
from the International Federation of Robotics (IFR) [19] with
macroeconomic and labor market indicators from the World
Bank’s World Development Indicators (WDI) [26]. The IFR
dataset provides annual figures on robot installations and
robot density across countries and industries. At the same
time, the WDI supplies complementary measures such as
GDP per worker, employment-to-population ratios, and
income inequality indices. The analysis proceeds in three
steps. First, descriptive statistics and trend analysis are used
to map global patterns of robot adoption over the past three
decades. Second, correlation and regression analyses
examine the relationship between robot density and
productivity outcomes, as well as labor market indicators.
Finally, sub-group comparisons are conducted between
developed and emerging economies to assess heterogeneity
in outcomes. Figure 1 presents a conceptual framework
showing the pathways through which Al and robotics
adoption (measured via IFR data) influence productivity,
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employment, and income distribution. Moderating factors
include trade openness, population, and GDP per capita, with
solid arrows representing direct effects and dashed arrows

representing indirect effects.
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Fig. 1 Conceptual Framework of AI/Robotics Impact on
Productivity and Employment

All variables are harmonized into panel datasets, and
standard econometric techniques are applied to control for
time and country effects. This mixed descriptive—
econometric approach enables a systematic evaluation of
how robotics adoption interacts with productivity,
employment, and inequality across diverse economies.

A. Dataset Description: IFR and WDI

This study integrates data from two sources. The
International Federation of Robotics (IFR, 2024) [19]
provides information on robot installations and robot density,
measured as the number of industrial robots per 10,000
employees in manufacturing. IFR data covers more than 60
countries and is widely recognized as the benchmark for
robotics adoption statistics. To assess economic and labor
market outcomes, we draw on the World Bank’s World
Development Indicators (WDI, 2024) [26], which provides
standardized  cross-country data on  productivity,
employment, inequality, and macroeconomic controls. The
combined panel covers the period 2000-2022 for a balanced
sample of 30 economies representing advanced, emerging,
and developing contexts, shown in Table 1.

Table 1. Variables and Data Sources (Illustrative Enriched
Values, 2022)

Variable Definition Source |Example Value
(2022)
Robot Number of industrial | IFR South Korea:
Density robots per 10,000((2024) [1,012; Germany:
employees in 415; China: 322
manufacturing
Robot Annual number of new | IFR China: 290,000;
Installations |robot units installed |(2024) |Japan: 47,000
USA: 39,000
GDP per|GDP (constant 2015|WDI USA: $138,000;
Worker USS$) divided by|(2024) |Germany:
employed population $115,000; India:
$21,000
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Employment (Ratio of employed| WDI |USA: 59.9%;
Rate persons to working-{(2024) |Germany:
age population (%) 61.2%; India:
51.5%
Gini Index  |Income inequality|[WDI  |USA: 41.5;
index (0 = equality,|(2024) |Germany: 30.1;
100 = inequality) India: 35.7
Population | Total national WDI ~ |USA: 333
population (2024) |million;
Germany: 83
million;  India:
1.41 billion
Trade Sum of exports and|WDI |Germany: 95%;
Openness imports as % of GDP |(2024) |USA: 26%;
India: 44%

B. Analytical Framework: Regression and Correlation
Approach

To quantify the relationship between robotics adoption and
macroeconomic outcomes, the analysis employs both
correlation tests and panel regression models. To address
potential endogeneity between robot density and
productivity, the model incorporates both country and year
fixed effects, which control for unobserved heterogeneity
and time-specific global shocks that might influence both
variables simultaneously. Additionally, lagged values of
robot density were employed in supplementary estimations
to minimize reverse causality, ensuring that productivity
changes do not contemporaneously drive robot adoption.
Key control variables such as trade openness, GDP per
capita, and population size were included to capture
macroeconomic and structural conditions that could jointly
affect automation intensity and productivity outcomes.

1) Correlation Analysis

Pairwise correlation coefficients are calculated between
robot density and selected economic indicators (productivity,
employment, and inequality). The Pearson correlation
coefficient is defined as:

I XD (i-7)

[P -2 5l -9y

pxy = Cov(X,Y)oxoy = (1)

where X represents robot density and Y represents each
outcome variable (GDP per worker, employment rate, Gini
index). This provides a first descriptive measure of
association.

2) Panel Regression Models

Given the panel nature of the dataset (country i, year t), we

estimate fixed-effects (FE) and random-effects (RE) models
to control for unobserved heterogeneity.

3) Productivity Equation

Prod;; = a + B, RobotDensity;, + 5, TradeOpen;, +

Bz Popie + pi + A + €5 (2)

e Dependent variable (Prod;): GDP per worker

(constant US$).
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e Key independent variable: robot density (robots per
10,000 employees).

e  Controls: trade openness, population.
e u;: country fixed effects, A;: year effects.
4) Employment Equation
EmpRate;; = a + y;RobotDensity;, +y,GDPpc;; +
ysTradeOpen;, + p; + A, + €, (3)

e Dependent variable:

ratio (%).
e Explanatory variables: robot density, GDP per
capita, trade openness.
5) Inequality Equation
Gini;; = a + 6; RobotDensity;, + 6, GDP,... +

employment-to-population

pcit
63 EmpRatey + p; + Ay + €5 “
e Dependent variable: Gini index (income

inequality).

e Explanatory variables: robot density, GDP per
capita, and employment rate.
6) Estimation Strategy

o Fixed-effects estimator (FE): controls for time-

invariant  unobserved  heterogeneity  across
countries.
e Random-effects estimator (RE): wused for

robustness; the Hausman test will determine
whether FE or RE is more appropriate.

e Robust standard errors (clustered by country):
correct for heteroscedasticity and serial correlation.
7) Expected Signs

B1 > 0: higher robot density is expected to increase
productivity.

e ¥, <0: higher robot density may reduce
employment rates, especially in low-skill jobs.

e §; > 0: higher robot density may increase
inequality through skill polarization, though
outcomes may vary by region.

IV. EMPIRICAL ANALYSIS AND FINDINGS

A. Trends in Global Robot Adoption by Country and
Sector

The International Federation of Robotics (IFR) dataset
provides comprehensive evidence on the diffusion of
industrial robots since the early 1990s. As illustrated in
Figure 2a—2d, adoption has accelerated sharply over the past
three decades, though with substantial variation across
regions, sectors, and countries.

Figure 2 (a) depicts the global average robot density
between 1993 and 2023. The trend demonstrates a near-
exponential rise, moving from fewer than 50 robots per
10,000 workers in the early 1990s to over 150 robots per
10,000 workers in 2023. This steady increase reflects both
technological progress in robotics and a declining cost of
adoption for firms.
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Figure 2 (b) highlights regional heterogeneity. Asia has
emerged as the global leader in robot deployment, driven
primarily by China, Japan, and South Korea. Europe follows,
with Germany and Italy as key adopters, while the Americas
lag in comparison, although the United States continues to
exhibit moderate growth. This divergence underscores the
importance of regional industrial policy, capital intensity,
and supply chain integration in shaping adoption.
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Figure 2. Global Robot Density Trends

Figure 2 (c) shows sectoral patterns of adoption. The
automotive industry remains the single largest user of robots,
consistently exhibiting the highest density levels, followed
by the electronics sector. Manufacturing subsectors such as
metals, plastics, and food processing show lower but
gradually increasing adoption rates. These differences reflect
the variation in automation potential across production tasks,
with assembly-line operations being most amenable to
robotic substitution.

Figure 2 (d) compares the top five countries in terms of
robot density: South Korea, Singapore, Germany, Japan, and
China. South Korea remains the global leader, with over
1,000 robots per 10,000 workers, a density almost three times
higher than the global average. Germany and Japan maintain
strong positions, while China has rapidly converged upward
since 2015, now surpassing the United States. This shift
underscores China’s transformation into the world’s largest
market for robot installations.

Taken together, Figure 2a—2d highlights the global nature
of robotics adoption but also reveal significant asymmetries
across regions, sectors, and countries. These findings suggest
that while automation is a universal trend, its intensity and
economic implications are shaped by structural, institutional,
and policy factors.

B. Relationship between Robot Adoption and
Productivity Growth

The relationship between robotics adoption and productivity
growth is explored by combining IFR measures of robot
density with World Bank data on GDP per worker. Figure 3
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presents scatterplots by region, illustrating the association
between the two variables. The upward-sloping patterns are
evident in Asia and Europe, where high robot density
corresponds to higher productivity levels. By contrast, the
Americas show a weaker but still positive relationship,
reflecting slower diffusion outside key industries.
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Figure 3. Scatterplots of Robot Density vs. GDP per
Worker (by Region)

To formalize these observations, panel regression models
(fixed effects with country and year controls) are estimated,
as reported in Table 2. Across specifications, robot density
exhibits a statistically significant and positive impact on
GDP per worker. The coefficient of 0.42 implies that a 10-
unit increase in robot density (robots per 10,000 workers) is
associated with approximately a 4.2% increase in GDP per
worker, holding other factors constant. Control variables
such as trade openness and population size are included, with
the former showing a small positive effect while the latter
remains statistically insignificant.

These results confirm that robot adoption contributes to
productivity growth at the macroeconomic level, though the
strength of the effect varies across regions.

Table 2. Regression Results — Impact of Robot Density on

Productivity
Variable Model Model (2): FE Model
(1): FE + Controls (3): RE
Robot Density 0.38%** 0.42%** 0.40%**
(0.07) (0.06) (0.08)
Trade Openness 0.12%* 0.10*
(0.05) (0.06)
Population (log) -0.05 -0.04
(0.04) (0.05)
Year FE Yes Yes Yes
Country FE Yes Yes No
Observations 660 660 660
R? (within) 0.34 0.41 0.36

*Notes: Dependent variable = log(GDP per worker, constant 2015 USS$).
Robust standard errors in parentheses. ***p<0.01, **p<0.05, p<0.1.

C. Labor Market Outcomes: Employment, Skill Shifts,

and Inequality

The labor market consequences of robotics adoption

extend beyond productivity gains,

43

influencing both
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employment levels and the distribution of income. Figure 4
illustrates the relationship between robot density and two
critical indicators: the employment rate Figure 4 (a) and the
Gini index of income inequality Figure 4 (b).

Figure 4 (a) shows a weak but negative association
between robot density and the employment rate. While
advanced adopters such as South Korea and Germany
maintain relatively stable employment levels despite high
robot density, emerging adopters display sharper declines.
This suggests that high-income economies are better able to
offset displacement effects through reallocation and
reskilling strategies, whereas in middle-income countries,
automation may directly substitute for labor.

Figure 4 (b) demonstrates a positive relationship between
robot density and inequality. Countries with rapid
adoption—such as China and the United States—exhibit
rising Gini indices, indicating that automation
disproportionately benefits high-skilled workers while
displacing those in routine and low-skill occupations.
Europe, by contrast, maintains comparatively lower
inequality, reflecting stronger redistributive institutions and
coordinated labor market policies.

a) Employment Rate b) Gini Index
80 (a) Employ . (b)
o ©
°
5E o 40 ‘.
o o o0 @ o .. s
g 70 I N x oo o
e ~ . e
£ of 3\\. ° g ° /‘. o
g .. ? £ ° [ 2 .
= B ‘o o | E 0%, o
% 55 [ .o o 30 ,/.; °
uE.u (I '. N /’. ° .o
50 4 O 251 @
° °
55t 20
0 200 400 600 800 0 200 400 600 800
Robot Density Robot Density

Figure 4. Robot Density vs. Employment Rate and Gini
Index

Regression estimates in Table 3 confirm these descriptive
patterns. Robot density is negatively associated with
employment rates, although the magnitude is modest (a 10-
unit increase in robot density is linked to a 0.15 percentage
point decline in employment rate). By contrast, the effect on
inequality is more substantial: a 10-unit increase in robot
density corresponds to a rise of 0.25 points in the Gini index.
The inclusion of controls (GDP per capita, trade openness,
population) does not substantially alter the direction or
significance of these effects, though the employment impact
is less robust.

Overall, these findings highlight the dual challenge: robotics
adoption can erode labor demand in specific segments while
simultaneously amplifying wage polarization. This
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underscores the importance of targeted policy interventions
in skills development, active labor market programs, and
redistribution to cushion the adjustment.

Table 3. Regression Results — Impact of Robot Density on
Employment and Inequality

Variable Model (1): Model (2): Gini
Employment Rate Index
Robot Density -0.015%* 0.025%**
(0.008) (0.007)
GDP per Capita 0.022** -0.018%*
(0.009) (0.008)
Trade Openness 0.011* -0.005
(0.006) (0.005)
Population (log) -0.010 0.007
(0.007) (0.006)
Year FE Yes Yes
Country FE Yes Yes
Observations 660 660
R? (within) 0.21 0.35

*Notes: Dependent variables are Employment Rate (%) and Gini Index.
Robust standard errors in parentheses. ***p<0.01, **p<0.05, p<0.1.

These findings are broadly consistent with recent empirical
and conceptual contributions in the literature. As shown in
Table 4, our results confirm earlier evidence that robotics

adoption raises productivity while exerting downward
pressure on employment and amplifying inequality.

Table 4. Comparison of Findings with State-of-the-Art

Literature
Study /|Data & [Key Key Key
Source |Methodolog |Findings |Findings on|Findings on
y on Employmen |Inequality
Productivit |t
y
[9] O*NET task |Not primary|~47% of US|Implied
dataset; focus jobs at risk of | inequality
probability of automation |via job risk
automation concentratio
Us) n
[27] Conceptual; |Digital tech|Displacemen |Rising skill-
US economy; | raises t possible in|biased
digital productivity |routine tasks |inequality
economy potential
perspective
[28] IFR  robot|Modest Significant |Rising wage
data (1993—|productivity |job polarization
2014, US| gains displacement
counties) in routine
manufacturin
g
[29] Cross- Productivity | Task Inequality
country uneven reallocation |[shaped by
Al/automatio more institutions
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n  exposure|across important
indices sectors than net job
loss
[30] Global macro | Productivity | Employment |Inequality is
analysis, Al|acceleration |risks are|widening
exposure possible higher in | without
emerging policy
markets action
This IFR  robot|Strong Weak but|Robust
Propose |density +|positive significant | positive
d Study |WDI (2000—|effect  on|adverse effect on the
2022, 30{GDP  per|impact  on|Gini index
countries) worker employment
rates

Taken together, the empirical results demonstrate a clear
trade-off: robotics adoption enhances productivity but also
intensifies social risks through labor displacement and
widening inequality. The magnitude and direction of these
effects vary across countries and regions, reflecting
differences in industrial structure, labor market institutions,
and policy capacity. These dynamics set the stage for the
subsequent discussion, where the implications of these
findings for business strategy and public policy are
considered.

V. DISCUSSION

The empirical evidence presented in this study underscores
the transformative role of artificial intelligence (AI) and
robotics in shaping productivity, employment, and inequality
across economies. By integrating IFR data on robot density
with WDI indicators, our findings confirm that robotics
adoption has a strong and consistent association with
productivity growth. Still, its labor market and distributional
consequences remain uneven and context-dependent. First,
the positive relationship between robot density and
productivity (Figure 3; Table 2) is consistent with the
characterization of AI and robotics as general-purpose
technologies that raise efficiency and output. However, the
strength of this association varies across regions. Asian
economies, particularly South Korea, Japan, and China,
display both rapid adoption and robust productivity gains,
while Europe shows moderate adoption with steady
improvements. By contrast, the Americas demonstrate a
weaker linkage, suggesting that sectoral specialization and
institutional capacity mediate the productivity benefits of
automation. Second, the labor market implications are more
complex. The weak negative correlation between robot
density and employment (Figure 4a; Table 3) indicates that
automation does exert downward pressure on job creation,
particularly in middle-income countries where industrial
restructuring 1is less advanced. However, advanced
economies appear more resilient, consistent with theories of
task reallocation and skill-biased technological change. The
evidence suggests that gains in knowledge-intensive and
high-skill jobs may offset employment losses in routine-
intensive occupations, contingent on the availability of
reskilling and training programs. Third, inequality emerges
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as a significant and robust outcome of robotics adoption
(Figure 4b; Table 3). The positive relationship between robot
density and the Gini index suggests that automation
contributes to wage polarization, disproportionately
benefiting high-skill workers while eroding opportunities for
low- and medium-skill groups. This finding aligns with prior
studies emphasizing the distributive risks of automation.
Regional variation again matters: inequality effects are more
pronounced in the Americas and Asia, while European
economies exhibit lower inequality due to stronger
redistributive institutions and coordinated labor markets.
Taken together, these results emphasize a dual reality:
robotics adoption enhances productivity but simultaneously
poses risks for labor markets and social cohesion. For
business and policy, the challenge lies in maximizing the
efficiency gains while mitigating displacement and
inequality. Firms need to integrate workforce upskilling into
their digital transformation strategies, while governments
must adopt active labor market policies, progressive
taxation, and inclusive social safety nets. Without such
measures, the productivity benefits of robotics risk being
offset by rising inequality and social instability. Although
this study integrates robust and publicly available datasets
from the International Federation of Robotics (IFR) and the
World Bank’s World Development Indicators (WDI), certain
limitations remain. The analysis primarily focuses on
industrial robots and may not fully capture the broader
influence of emerging Al-based automation in service and
knowledge-intensive sectors. Additionally, differences in
data coverage across countries, particularly for developing
economies, may affect the regional balance of observations.
The temporal scope is also constrained by the latest available
IFR data, which limits the exploration of post-2023 trends.
Future research may address these constraints by
incorporating alternative datasets, broader measures of
automation, and firm-level microdata to deepen the
understanding of the societal impacts of Al and robotics
adoption.

VI. CONCLUSION AND POLICY RECOMMENDATIONS

This paper has examined the implications of Al and
robotics on productivity, employment, and inequality by
fusing IFR robotics data with World Bank development
indicators. The findings indeed validate that the uptake of
robotics leads to productivity gains, and higher robot density
is strongly linked to such productivity gains in terms of GDP
per person. At the same time, there is evidence to suggest
that automation hurts employment rates, as well as increases
income inequality, especially in countries where institutional
capacity to manage technological change is lower. These
empirical findings capture the two sides of the coin of
robotics adoption: It is a force on the one hand for economic
efficiency, and on the other hand, it poses the potential for
jeopardizing labour market stability and social equity.

The more general finding is that the impacts of Al and
robotics depend both on the intensity with which
technologies are deployed as well as on the institutional and
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policy context. We also show that emerging economies are
subject to sharper trade-offs between productivity growth
and employment stability than the advanced economies with
established welfare systems and strong institutions for labor
market performance.

To meet these challenges, policy needs to evolve along
multiple dimensions at the same time. Human capital
development and reskilling workers for jobs in knowledge-
intensive occupations are necessary because significant
investments in human capital are necessary to facilitate
workers' transition from roles in routine to knowledge-
intensive tasks. Social protection programs, such as those for
unemployment insurance benefits and redistribution taxes,
should be strengthened to minimize the cost of adjustment
and inequality. Innovation policies should promote the
uptake of robotics in a way that is complementary to human
labor, and specifically target small and medium-sized
enterprises to avoid excessive concentration of technological
benefits among large companies. Adaptive labor market
institutions, based on active employment assistance services
and coordinated wage-setting, help to share any productivity
gains among workers more effectively. Lastly, there is an
urgent need for international cooperation to transfer best
practices and ensure that technological advancements do not
further divide the advanced from the emerging economies.
In conclusion, the transformative potential of Al and robotics
can only be fully realized if governments, firms, and
international organizations pursue strategies that balance
efficiency with equity. The challenge is not whether
automation will continue to expand, but whether its benefits
will be harnessed inclusively and sustainably. The future of
global labor markets will depend on how effectively policy
anticipates and manages the complex interactions between
technology, productivity, and society.
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